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Abstract

We have measured the 129Xe spin-lattice relaxation time T1 for xenon films adsorbed on silica gel in an 8 T magnetic
field at dilution refrigerator temperatures, both with and without 3He filling the sample cell. Without 3He, T1

increases rapidly as the temperature is lowered. With 3He, T1 has a temperature-independent value of about 1000 s.
Using this technique, it is possible to brute-force polarize large quantities of xenon in high B/T conditions.
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1. Introduction

Recently, important applications have arisen for
matter prepared with hyperpolarized nuclear spins
such as 3He and 129Xe [1]. Usually hyperpolarization
has been produced by optical pumping at room tem-
perature, but brute force polarization at high magnetic
fields and dilution-refrigerator temperatures is another
possibility. For example, the equilibrium polarization
of 129Xe in a 16 T field at T = 15 mK is 29%.

A major obstacle to brute-force polarization of 129Xe
is the long spin-lattice relaxation time T1, which pre-
vents bulk solid xenon from reaching equilibrium po-
larization in a reasonable period of time. It has been
known since the 1980’s that the surface nuclear spins
in substances immersed in liquid 3He are rapidly re-
laxed by the 3He [2]. The mechanism is quantum tun-
neling of 3He atoms in the localized (solid-like) layer
that forms near solid surfaces, a process that persists
to arbitrarily low temperatures [3,4].

The difficulty with applying this method to hyper-
polarizing 129Xe is achieving sufficiently large surface
area to polarize large quantities of xenon. In this paper
we describe preliminary experiments that use a new
method to overcome this difficulty: the xenon is plated
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onto a substrate with very high specific surface area
(silica gel is used here), which is then immersed in liq-
uid 3He in high B/T conditions.

The relaxation time for surface 129Xe spins T1s de-
pends upon the distance between the 129Xe and 3He
nuclei, as well as the spectral density of tunneling in the
localized 3He layer at the 129Xe Larmor frequency [3,4].
Unfortunately neither quantity is accurately known for
3He-129Xe interfaces, which to our knowledge have not
been explored before this work. Nevertheless, by ex-
trapolating the measured T1s for other substances in
contact with 3He [4] we make the following rough esti-
mate: T1s ≈ (4100 s)(B/16 T) where B is the applied
field. Furthermore, we estimate that for 129Xe films
thinner than 100 atomic layers spin diffusion between
surface and interior 129Xe spins does not present a sig-
nificant bottleneck for the overall T1 value.

2. Experimental methods and results

We have constructed a cell containing powdered sil-
ica gel substrate [5] along with a sintered-silver heat
exchanger, which was cooled by a dilution refrigerator
in an 8 T NMR magnet. The silica gel was contained in
an epoxy lower portion of the cell, which extended into
a small birdcage NMR resonator [6] tuned to 92 MHz,
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Fig. 1. Recovery of 129Xe nuclear magnetization following an

inverting pulse or saturating comb. The magnetization data

have been rescaled to an arbitrary range of (−1, 1). The curves

show fits to the data as follows. With 3He: simple exponential

recovery with T1 = 814 s. No 3He: stretched exponential re-

covery with T1 = 1.0× 104 s and stretching exponent α = 0.6.

the 129Xe Larmor frequency at 8 T. The magnetic field
could also be lowered, to measure the 3He NMR signal
at the same frequency. A vibrating-wire viscometer at
the top of the cell permitted the 3He liquid level to be
monitored. A heated fill line was used to admit xenon
to the cell. The cell was maintained at approximately
90 K during the xenon condensation process. The vol-
ume of xenon condensed was typically 20% of the avail-
able pore space, corresponding to approximately three
atomic layers on the substrate.

The spin-lattice relaxation of 129Xe was measured by
small-angle tipping pulses after either a magnetization-
inverting π pulse or a magnetization-destroying comb
of large-angle pulses. The magnetization was sampled
over a very large range of times (0.1 - 40,000 s) to ensure
that very rapidly or slowly relaxing spin populations
were not missed.

As shown in Fig. 1, addition of 3He to the cell sig-
nificantly shortens T1, and also changes the recovery
curve from a stretched exponential (M(t) − M(∞) ∝
exp[−(t/T1)

α]) to a simple exponential. The stretched-
exponential form is typically due to a wide distribution
of T1 values for individual 129Xe spins.

Figure 2 shows the temperature dependence of T1

measured with and without 3He in the cell. In the
absence of 3He, T1 is strongly temperature depen-
dent. The mechanism of relaxation without 3He is not
known, although it presumably reflects interactions
with the silica surface and/or adsorbed impurities such
as H2O and O2. This relaxation rate is well fit by a
power law (Fig. 2). When 3He is added to the cell, the
relaxation time reduces to a temperature-independent
value T1 ≈ 1000 s. This compares favorably to the
estimate above.

Fig. 2. Spin lattice relaxation time T1 measured for 129Xe as a

function of temperature and 3He coverage. With 3He present

in the cell, T1 is temperature independent with a value of

approximately 1000 s. With no 3He present, T1 is longer and

strongly temperature-dependent. The line shows a power-law

fit, T1 ∝ T−1.7.

3. Conclusions

We have demonstrated that macroscopic quantities
of solid xenon can be brute-force polarized at dilution
refrigerator temperatures, using the 3He-porous sub-
strate method. A number of obstacles remain to de-
veloping this method into a practical method for pro-
ducing hyperpolarized 129Xe gas. In particular, it may
be necessary to switch off the relaxation process before
attempting to remove the xenon sample to low B/T
conditions. Addition of 4He to the cell could provide
such a switch, as 4He preferentially occupies sites ad-
jacent to solid surfaces. Significantly, spreading of 4He
over the xenon surface will occur by superfluid film
flow. Like the tunneling process that is used to induce
relaxation, this is a quantum process that can proceed
at arbitrarily low temperatures.
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