

Spin polarization of xenon films at low temperature induced by ^3He

N. Biškup ^{a,b}, N. Kalechofsky ^b, D. Candela ^{a,1}

^a*Physics Department, University of Massachusetts, Amherst, MA 01003, USA*

^b*Oxford Instruments America, Concord, MA 01742, USA*

Abstract

We have measured the ^{129}Xe spin-lattice relaxation time T_1 for xenon films adsorbed on silica gel in an 8 T magnetic field at dilution refrigerator temperatures, both with and without ^3He filling the sample cell. Without ^3He , T_1 increases rapidly as the temperature is lowered. With ^3He , T_1 has a temperature-independent value of about 1000 s. Using this technique, it is possible to brute-force polarize large quantities of xenon in high B/T conditions.

Key words: helium-3; NMR; films and interfaces; hyperpolarized

1. Introduction

Recently, important applications have arisen for matter prepared with hyperpolarized nuclear spins such as ^3He and ^{129}Xe [1]. Usually hyperpolarization has been produced by optical pumping at room temperature, but brute force polarization at high magnetic fields and dilution-refrigerator temperatures is another possibility. For example, the equilibrium polarization of ^{129}Xe in a 16 T field at $T = 15$ mK is 29%.

A major obstacle to brute-force polarization of ^{129}Xe is the long spin-lattice relaxation time T_1 , which prevents bulk solid xenon from reaching equilibrium polarization in a reasonable period of time. It has been known since the 1980's that the surface nuclear spins in substances immersed in liquid ^3He are rapidly relaxed by the ^3He [2]. The mechanism is quantum tunneling of ^3He atoms in the localized (solid-like) layer that forms near solid surfaces, a process that persists to arbitrarily low temperatures [3,4].

The difficulty with applying this method to hyperpolarizing ^{129}Xe is achieving sufficiently large surface area to polarize large quantities of xenon. In this paper we describe preliminary experiments that use a new method to overcome this difficulty: the xenon is plated

onto a substrate with very high specific surface area (silica gel is used here), which is then immersed in liquid ^3He in high B/T conditions.

The relaxation time for surface ^{129}Xe spins T_{1s} depends upon the distance between the ^{129}Xe and ^3He nuclei, as well as the spectral density of tunneling in the localized ^3He layer at the ^{129}Xe Larmor frequency [3,4]. Unfortunately neither quantity is accurately known for ^3He - ^{129}Xe interfaces, which to our knowledge have not been explored before this work. Nevertheless, by extrapolating the measured T_{1s} for other substances in contact with ^3He [4] we make the following rough estimate: $T_{1s} \approx (4100 \text{ s})(B/16 \text{ T})$ where B is the applied field. Furthermore, we estimate that for ^{129}Xe films thinner than 100 atomic layers spin diffusion between surface and interior ^{129}Xe spins does not present a significant bottleneck for the overall T_1 value.

2. Experimental methods and results

We have constructed a cell containing powdered silica gel substrate [5] along with a sintered-silver heat exchanger, which was cooled by a dilution refrigerator in an 8 T NMR magnet. The silica gel was contained in an epoxy lower portion of the cell, which extended into a small birdcage NMR resonator [6] tuned to 92 MHz,

¹ Corresponding author. E-mail: candela@physics.umass.edu

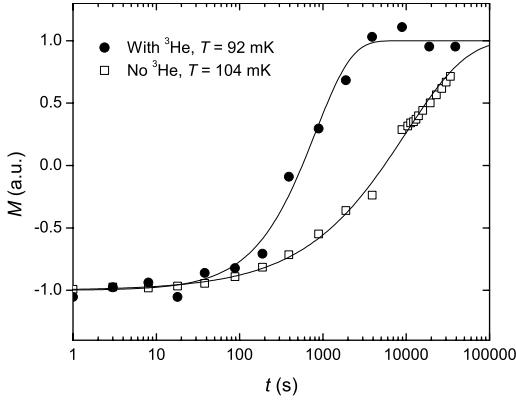


Fig. 1. Recovery of ^{129}Xe nuclear magnetization following an inverting pulse or saturating comb. The magnetization data have been rescaled to an arbitrary range of $(-1, 1)$. The curves show fits to the data as follows. With ^3He : simple exponential recovery with $T_1 = 814$ s. No ^3He : stretched exponential recovery with $T_1 = 1.0 \times 10^4$ s and stretching exponent $\alpha = 0.6$.

the ^{129}Xe Larmor frequency at 8 T. The magnetic field could also be lowered, to measure the ^3He NMR signal at the same frequency. A vibrating-wire viscometer at the top of the cell permitted the ^3He liquid level to be monitored. A heated fill line was used to admit xenon to the cell. The cell was maintained at approximately 90 K during the xenon condensation process. The volume of xenon condensed was typically 20% of the available pore space, corresponding to approximately three atomic layers on the substrate.

The spin-lattice relaxation of ^{129}Xe was measured by small-angle tipping pulses after either a magnetization-inverting π pulse or a magnetization-destroying comb of large-angle pulses. The magnetization was sampled over a very large range of times (0.1 - 40,000 s) to ensure that very rapidly or slowly relaxing spin populations were not missed.

As shown in Fig. 1, addition of ^3He to the cell significantly shortens T_1 , and also changes the recovery curve from a stretched exponential ($M(t) - M(\infty) \propto \exp[-(t/T_1)^\alpha]$) to a simple exponential. The stretched-exponential form is typically due to a wide distribution of T_1 values for individual ^{129}Xe spins.

Figure 2 shows the temperature dependence of T_1 measured with and without ^3He in the cell. In the absence of ^3He , T_1 is strongly temperature dependent. The mechanism of relaxation without ^3He is not known, although it presumably reflects interactions with the silica surface and/or adsorbed impurities such as H_2O and O_2 . This relaxation rate is well fit by a power law (Fig. 2). When ^3He is added to the cell, the relaxation time reduces to a temperature-independent value $T_1 \approx 1000$ s. This compares favorably to the estimate above.

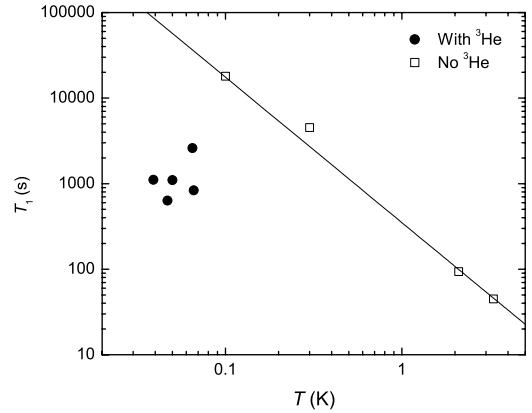


Fig. 2. Spin lattice relaxation time T_1 measured for ^{129}Xe as a function of temperature and ^3He coverage. With ^3He present in the cell, T_1 is temperature independent with a value of approximately 1000 s. With no ^3He present, T_1 is longer and strongly temperature-dependent. The line shows a power-law fit, $T_1 \propto T^{-1.7}$.

3. Conclusions

We have demonstrated that macroscopic quantities of solid xenon can be brute-force polarized at dilution refrigerator temperatures, using the ^3He -porous substrate method. A number of obstacles remain to developing this method into a practical method for producing hyperpolarized ^{129}Xe gas. In particular, it may be necessary to switch off the relaxation process before attempting to remove the xenon sample to low B/T conditions. Addition of ^4He to the cell could provide such a switch, as ^4He preferentially occupies sites adjacent to solid surfaces. Significantly, spreading of ^4He over the xenon surface will occur by superfluid film flow. Like the tunneling process that is used to induce relaxation, this is a quantum process that can proceed at arbitrarily low temperatures.

References

- [1] T. Pietrass, Magn. Reson. Rev. **17** (2000) 263.
- [2] P. C. Hammel, et al., Phys. Rev. Lett. **51** (1983), 2124.
- [3] S. Maegawa, A. Schuhl, M. W. Meisel, M. Chapellier, Europhys. Lett. **1** (1986), 83.
- [4] O. Gonon, P. L. Kuhns, C. Zuo, J. S. Waugh, J. Magn. Reson. **81** (1989), 491.
- [5] Alfa Aesar #42725, nominal surface area $500 \text{ m}^2/\text{g}$.
- [6] H. Akimoto, D. Candela, J. Low Temp. Phys. **121** (2000), 791.