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aDepartment of Physical Sciences, POB 3000, FIN-90014 University of Oulu, Finland

Abstract

The magnetic field dependence of the low temperature specific heat coefficient γ(T, H) = C(T, H)/T has been
shown experimentally and theoretically to obey the scaling relation γ(T, H) = γ0

√
T 2 + Ah, where h = |H|/1T

and the coefficient A depends upon field direction. This suggests that also other quantities such as the NMR Knight
shifts Kα(T, h) (α = c,ab) and the relaxation rates wα(T, h) = (T1T )−1 may be expressed in terms of the scaled
variable T =

√
T 2 + Aαh in the form Kα(T, h) = K0(T ) and wα(T, h) = w0(T ), where the presence of vorteces in

the mixed state simply rises the effective temperature T . We have tested this idea using the recent NMR rate data
on TlSr2CaCu2O6.8 by G.-q. Zheng et al with H||c. The theoretical curve for w(T, 0) consists of a fermion part
with added stripe contribution due to the localized triplet bosons. The data points for various field collapse to the
curve w(T, 0), with A = 80 K2.
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The low temperature specific heat coefficient in
YBa2Cu3O7 has been shown by Wang et al [1] to
satisfy the scaling relation

γ(T, H)

T
= γ0

√
1 + z2 , (1)

where z = A1/2h1/2/T in the scaled variable with A
and γ0 parameters. The function

√
1 + z2 was used as

an interpolation function between the limits h = 0
and T = 0, which according to the d-wave model [2]
are γ(T, 0) ∼ T and γ(T, h)/T ∼ √

h in the case of
H||c. Subsequently it was shown that the interpolating
function actually follows from the chemical equilibrium
theory [3] where the specific heat coefficient can be
calculated from

γ(T, h) = γ[1 − f(T,H)] = γ[1 +
α

t2 + β1h
]−1/2 , (2)

with t = T/T∗. Since the value of β1 obtained was
small β1 ≈ .0056, Eq.(2) reduces to Eq.(1) for small t,
with A = β1T

∗2 and γ0 = γ/
√

α. Here function 1 − f
gives the fraction of fermions as a function temperature
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and magnetic field originally obtained at high temper-
atures for the chemical equilibrium reaction B++ ⇀↽
2h+ [3,4] with quadratic magnetic field dependence.
The linear field dependence is due to presence of vorte-
ces. The Eq.(2) suggests that function f(T, h) can be
written simply in terms of the effective temperature
T =

√
T 2 + Ah in the form f(T, h) = f(T ). To test

whether this idea would work also for quantities other
than the low temperature specific heat we have ap-
plied it to the NMR measurements of Zheng et al [5]
on TlSr2CaCu2O6.8 in magnetic fields ranging from 0
to 28 T. The Knight shifts Ks(T, h) and the relaxation
rates w(T, h) = (T1cT )−1 can be written in terms of
the effective temperature T in the form

Ks(T, h) = K0(T ) (3)

w(T, h) = w0(T ) . (4)

Notably this test can be done without knowing ex-
plicitely the functions K0 and w0. Due to the uncer-
tainties in the diamagnetic corrections for K0 we have
used only the rate data and the results are shown in
Fig.1, which contains the measured points for the high-
est field h = 28 (black dots) and the mapping to the
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Fig. 1. Temperatur and magnetic field dependencies of 1/T1T .

The line is calculated by using Eq.5. The experimental points

are from Ref. [5] for 63Cu.

curve w0(T ). Although not shown in Fig.1, the smaller
field points get also mapped to the same curve w0(T )
to within the same accuracy.

We have also calculated the curve w0(T ) by using
the expression [4]

w0(T ) = C0 + C1[1 − f(T )]2 + C2[1 − ξ(T )]2f2(T ) ,(5)

where [1−ξ(T )]f(T ) gives the fraction of triplet bosons
localized on CuO6 octahedra, which is the present
model for the stripes of localized charge and magnetic
moment. The fact that the localized bosons have spin
unity is due to the Hund’s rule since the localization
sites (CuO5 or CuO6) are chemical complexes. Within
each CuO2 plane the magnetic moments may have
antiferromagnetic ordering. The first constant term
in Eq.(5) is due to impurities and/or spectators, the
second term from the holes and the third term from lo-
calized bosons. Above the temperature TBL, all bosons
are localized. Above this temperature ξ = 0 and the
third term gives Curie-Weiss form. Besides this an-
tiferromagnetic fluctuation term it also explains the
spin gap effect. The parameter values used are α = .8,
T∗ = 130 K, C0 = .24 s−1K−1, C1 = 9.5 s−1K−1 and
C2 = 72.1 s−1K−1. We have used for the function
ξ(T ) the fermi form ξ(T ) = (1 + exp T−T0

b
)−1 with

T0 = 60 K and b = 6 K. This looks like lots of param-
eters, but one can calculate now the outcome of most
experiments in the normal state and the superfluid
state. Good example is the superfluid fraction ns(T ).
Since the condensate is depleted by localization and by
phonon scattering one obtains by the two fluid model

ns(T ) = ξ(T )f(T ) − ξ(Tc)f(Tc)
(

T

Tc

)4

. (6)

This expression has been used to calculate the
superfluid fractions in Fig.2. The agreement in
YBa2Cu3O6.95 is very good. Clearly this expression
can be used to calculate also ns(T, h).

Within the accuracy of the NMR experiments,
w(T, h) shows no magnetics field dependence in the
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Fig. 2. Theoretical superfluid fraction ns(T ) vs T/Tc for

YBa2Cu3O6.95 (Tc = 93.5 K, T ∗ = 170 K, T0 = 83 K, and

b = 5 K). Dashed line is calculateted for TlSr2CaCu2O6.8

(Tc = 68 K, T∗ = 120 K, T0 = 60 K, and b = 6). The experi-

mental points are from Ref. [7] for YBa2Cu3O6.95.

normal state [6]. This is in agreement with the mea-
surements of Gorny et al [6] on two compounds of
YBCO. For the optimally doped compound with
Tc = 93 K we obtain the mapping parameter A ≈ 82
K2, close to the value obtained for the thallium com-
pound. The accuracy of the mapping is difficult to test
because the low T values are missing.

The mapping can be used to calculate the upper
critical field hc2(T ) by setting T = Tc(0) and T =
Tc(h) to give

hc2(T ) =
Tc(0)2

A
(1 − τ2) , (7)

where τ = T/Tc(0). This curve is linear near τ ≈ 1 and
gives Hc2(0) ≈ 58 T.

References

[1] Y. Wang, B. Revaz, A. Erb, and A. Junod, Phys. Rev. B

63 (2001) 94508.

[2] G. E. Volovik, JETP Lett. 65 (1997) 491.
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