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Abstract

We propose an experimental method to implement scalable quantum computing (QC) in which any two charge
qubits can be effectively coupled by an experimentally accessible inductance. We formulate an efficient and realizable
QC scheme that requires only one (instead of two or more) two-bit operation to implement conditional logic gates.
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1. Introduction

Josephson-junction circuits have received much at-
tention because they may be used in quantum comput-
ing (QC) [1]. Based on the charge and phase degrees of
freedom in the Josephson-junction devices, charge [2,3]
and phase qubits [4,5] have been developed. Also, a new
type of solid-state qubit is realized in a current-biased
Josephson junction [6]. Recent experiments [2,5–7] has
shown that the Josephson qubits are very promising in
manufacturing quantum information processors.

Here we present an experimental method to imple-
ment QC using Josephson charge qubits. A common
inductance is used to directly couple the charge qubits
involved, in contrast with the scheme in [3] where oscil-
lating modes in LC circuits are employed to generate
interbit coupling. Our QC architecture is scalable in
the sense that any two charge qubits (not necessarily
neighbors) can be effectively coupled by an experimen-
tally accessible inductance. More importantly, we for-
mulate an efficient QC scheme that requires only one
two-bit operation to implement conditional logic gates.

1 Corresponding author. E-mail: jqyou@postman.riken.go.jp
2 Permanent address.

2. Quantum-computer structure

The proposed quantum computer consists of N
Cooper-pair boxes coupled by a common supercon-
ducting inductance L (see Fig. 1). For the kth Cooper-
pair box, a superconducting island with excess charge
Qk = 2enk is weakly coupled by two symmetric dc
SQUIDs and biased by an applied voltage VXk through
a gate capacitance Ck. The two symmetric dc SQUIDs
are assumed to be identical and all Josephson junc-
tions in them have Josephson coupling energy E0

Jk

and capacitance CJk . The magnetic fluxes through
the two SQUID loops of the kth Cooper-pair box are
designed to have the same values ΦXk but opposite
directions, so that this pair of fluxes cancel each other
in any loop enclosing them. The coupling of selected
Cooper-pair boxes by the common superconducting
inductance L can be implemented by switching on the
SQUIDs connected to the chosen Cooper-pair boxes.

For any given Cooper-pair box, say i, when ΦXk =
1
2Φ0 and VXk = (2nk + 1)e/Ck for all boxes ex-
cept k = i, the inductance L only connects the ith
Cooper-pair box to form a superconducting loop. In
the spin-1

2 representation with charge states | ↑〉i ≡
|ni〉 and | ↓〉i ≡ |ni + 1〉, the reduced Hamiltonian
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Fig. 1. Schematic diagram of the proposed scalable quantum

computer. Each Cooper-pair box is operated in the charg-

ing regime with Eck much larger E0
Jk, k = 1, 2, . . . , N . Also,

kBT � Eck < ∆ (the superconducting gap).

of the system is H1 = εi(VXi) σ
(i)
z − EJi σ

(i)
x , where

εi(VXi) = 1
2
Eci[CiVXi/e − (2ni + 1)], with Eci =

2e2/(Ci + 4CJi). The intrabit coupling EJi is given
by EJi = EJi(ΦXi) cos(πΦe/Φ0)ξ, where EJi(ΦXi) =
2E0

Ji cos(πΦXi/Φ0), and Φ0 = h/2e. Here, ξ is a power
series with expansion parameter ηi = πLIci/Φ0, where
Ici = −πEJi(ΦXi)/Φ0. Retained up to second-order
terms, ξ = 1 − 1

2
η2

i sin2(πΦe/Φ0). This two-level sys-
tem is somewhat similar to the charge-flux qubit [7]
because it involves both the charge states and the flux
in the loop.

To couple any two Cooper-pair boxes, say i and j,
we choose ΦXk = 1

2Φ0 and VXk = (2nk + 1)e/Ck for
all boxes except k = i and j. The inductance L is
shared by the Cooper-pair boxes i and j to form su-
perconducting loops, and the reduced Hamiltonian of
the system is H2 =

∑
k=i,j

[εk(VXk)σ
(k)
z −EJk σ

(k)
x ]−

χij σ
(i)
x σ

(j)
x . Up to second-order terms, the intrabit cou-

pling is EJi = EJi(ΦXi) cos(πΦe/Φ0)ξ, with ξ = 1 −
1
2 (η2

i + 3η2
j ) sin2(πΦe/Φ0), and the interbit coupling is

χij = LIciIcj sin2(πΦe/Φ0). Here we assume that the
inductance of the qubit circuits is much smaller than
L. When the two qubits are far apart, the inductance
of the wires connecting them might not be neglected.
However, the reduced two-bit Hamiltonian is still given
by H2, but with EJk and χij slightly modified.

3. Universal set of quantum logic gates

A quantum system evolves according to U(t) =
exp(−iHt/h̄). To implement QC, one-bit and condi-
tional two-bit gates are required. For any Cooper-pair
box, say i, one can shift the flux ΦXi and/or gate volt-
age VXi for a given switching time τ to produce one-bit
rotations. A universal set of one-bit gates U

(i)
z (α) =

exp[iασ
(i)
z ], and U

(i)
x (β) = exp[iβσ

(i)
x ], where α =

−εi(VXi)τ/h̄ and β = EJiτ/h̄, can be defined by
choosing EJi = 0 and εi(VXi) = 0 in H1, respec-
tively. Any one-bit rotation can be derived in terms

of these two types of one-bit gates. For instance, the
Hadamard gate is Ri = e−iπ/2U

(i)
z (π

4
)U

(i)
x (π

4
)U

(i)
z (π

4
),

and the one-bit rotation Vj = exp[iπσ
(j)
y /4] is given by

Vj = U
(j)
z (−π

4
)U

(j)
x (π

4
)U

(j)
z (π

4
). For any two Cooper-

pair boxes, say i and j, when εi(VXi) = εj(VXj) = 0,

the Hamiltonian becomes H2 = −EJiσ
(i)
x −EJjσ

(j)
x −

χijσ
(i)
x σ

(j)
x . When the parameters are suitably chosen

so that −EJi = −EJj = χij = πh̄/4τ for a switching
time τ , we obtain a conditional two-bit operation:
U ′ = eiπ/4U2b = exp{iπ

4
[1 − σ

(i)
x − σ

(j)
x + σ

(i)
x σ

(j)
x ]}.

The controlled-phase-shift gate UCPS is given by
UCPS = R†

jR
†
i U

′RiRj . Combining Vj with UCPS, we

obtain the controlled-NOT gate: UCNOT = V †
j UCPSVj .

A sequence of such conditional two-bit gates supple-
mented with one-bit rotations constitute a universal
element for QC [8]. Usually, a two-bit operation is
much slower than a one-bit operation. Our designs for
conditional gates UCPS and UCNOT are efficient since
only one (instead of two or more) two-bit operation U ′

is used.
The typical switching time τ (1) during a one-bit op-

eration is of the order h̄/E0
J . For the experimental value

of E0
J ∼ 100 mK, there is τ (1) ∼ 0.1 ns. The switching

time τ (2) for the two-bit operation is typically of the
order (h̄/L)(Φ0/πE0

J )2. Choosing E0
J ∼ 100 mK and

τ (2) ∼ 10τ (1) (i.e., ten times slower than the one-bit
rotation), we have L ∼ 30 nH. A small-size inductance
with this value can be made with Josephson junctions.
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