

Co K-edge XANES and spin-state transition of RCO_3 ($\text{R} = \text{La, Eu}$)

J. Y. Chang, B. N. Lin, Y. Y. Hsu, H. C. Ku ¹

Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C.

Abstract

Co K-edge X-ray absorption near-edge spectra (XANES) and magnetic studies for the rhombohedral LaCoO_3 with low-spin (LS) state to intermediate-spin (IS) state transition $T_s \simeq 105$ K and orthorhombic EuCoO_3 ($T_s \simeq 300$ K) are reported. The small pre-edge feature observed is from $1s$ - $3d$ dipole transition, which is weakly allowed through the hybridization of Co $4p$ states with $3d$ states of neighboring Co atoms. For LaCoO_3 at 300 K, pre-edge can be fitted using three peaks with energy separation $P_2 - P_1 = 2.0$ eV and $P_3 - P_2 = 1.5$ eV. Since the thermally excited IS state is a mixed $t_{2g}^5 e_g^1$ and $d^7 \underline{L}$ ($t_{2g}^6 e_g^1$ or $t_{2g}^5 e_g^2$), with almost filled $t_{2g\uparrow}$ states, so the three peaks P_1 , P_2 , P_3 are probably corresponding to unfilled $t_{2g\downarrow}$, $e_{g\uparrow}$ and $e_{g\downarrow}$ states, respectively.

Key words: spin state transition; XANES

Rhombohedral LaCoO_3 ($\text{R}\bar{3}\text{c}$) with trivalent Co^{3+} ($3d^6$) is a nonmagnetic Mott insulator at low temperature which undergoes a thermally induced spin-state transition to a paramagnetic state with $T_s \simeq 90$ -100 K and a metal-insulator transition above 500 K [1-8]. It remains controversial that whether the spin-state transition is from a low-spin (LS: t_{2g}^6 , $S=0$) state to an intermediate-spin (IS: $t_{2g}^5 e_g^1$, $S=1$) state or to a high-spin (HS: $t_{2g}^4 e_g^2$, $S=2$) state. The LDA+U calculation shows that IS state is energetically comparable to LS state, but much more stabilized than HS state due to the larger Co-O d - p hybridization [1]. The X-ray photoemission and absorption studies indicate that the ground state is a Co^{III} LS state with heavily mixed d^6 and $d^7 \underline{L}$ ($t_{2g}^6 e_g^1$ with ligand hole) character due to strong d - p hybridization and the spin-state transition is a gradual LS-IS transition [2]. The infrared studies indicate a local lattice distortion during the LS-IS transition due to dynamical Jahn-Teller effect [3].

For orthorhombic rare earth RCO_3 (Pbnm) compounds, possible $T_s \simeq 220$ K for PrCoO_3 and $\simeq 275$ K for NdCoO_3 are reported [6]. Since various reported data are confused by magnetic rare earth R^{3+} signal

[5,6], in order to identify the true spin-state transition in orthorhombic phase, EuCoO_3 is chosen as the best candidate with nonmagnetic Eu^{3+} ground state ($J=0$) [8].

The samples $\text{RCO}_{3+\delta}$ ($\text{R} = \text{La, Eu}$) were synthesized by standard solid-state reaction. Sintered pellets were annealed in O_2 , air or Ar to check the variation of oxygen content. Final oxygen content parameter $\delta \simeq 0$ was crosschecked by comparing the X-ray diffraction, magnetic susceptibility and XANES data [8]. The structural studies indicate that there is no interstitial oxygen site. With fully occupied oxygen sublattice and R and Co vacancies, the correct composition is $\text{R}_z \text{Co}_z \text{O}_3$ with $z = 3/(3+\delta)$, and maximum formula unit volume is achieved at the stoichiometric RCO_3 . The maximum formula unit volume of 55.91 \AA^3 for rhombohedral $\text{LaCoO}_{3+\delta}$ and 52.83 \AA^3 for orthorhombic $\text{EuCoO}_{3+\delta}$ derived from X-ray diffraction studies indicate that samples prepared are very close to the stoichiometric 113 ratio ($\delta \simeq 0$) with Co^{3+} [8].

Molar magnetic susceptibility $\chi_m(T)$ in 3-T zero-field-cooled (ZFC) for LaCoO_3 and EuCoO_3 are shown in Fig. 1. The susceptibility shows similar behavior as previously reported data and decreases abruptly from $T_s \simeq 105$ K for LaCoO_3 , although accompanying with

¹ E-mail: hcku@phys.nthu.edu.tw

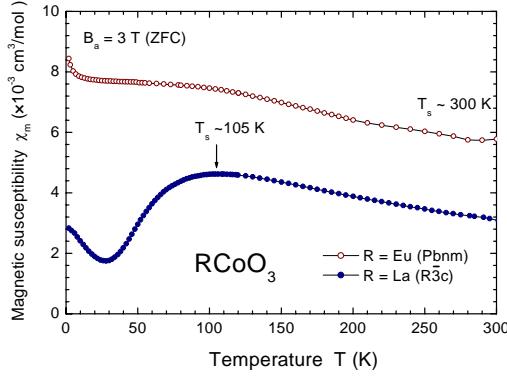


Fig. 1. Molar magnetic susceptibility χ_m (T) in 3-T field (ZFC mode) for rhombohedral LaCoO_3 and orthorhombic EuCoO_3 .

a small Curie-Weiss-like contribution from magnetic impurities below 30 K with small $\chi_m(2 \text{ K}) = 2.9 \times 10^{-3} \text{ cm}^3/\text{mol}$ [2,3]. For EuCoO_3 , low susceptibility value in all temperature range indicates a T_s near or above 300 K which is masked by the magnetic signal of Eu^{3+} excited state ($J = 1$) [8].

The Co K-edge XANES spectra for RCO_3 ($R = \text{La, Eu}$) are shown in Fig. 2. The energy is calibrated by a Co metal foil with threshold edge energy of $E_0 = 7709 \text{ eV}$. The E_0 for two standards CoO (Co^{2+}) and Co_2O_3 (Co^{3+}) indicates a substantial shift of E_0 with increasing Co formal valence. Almost identical E_0 for La and Eu samples indicates that they are very close to the stoichiometric composition with Co^{3+} .

The K-edge XANES is sharp with a long, low energy tail. The main edge is attributed to $1s$ - $4p$ dipole transition to Co $4p$ states. Since the crystal structure of the RCO_3 system is identical to the $\text{LaMnO}_{3+\delta}$ system (Pbnm for $\delta \simeq 0$ and $\text{R}\bar{3}\text{c}$ for $\delta > 0$). The shape

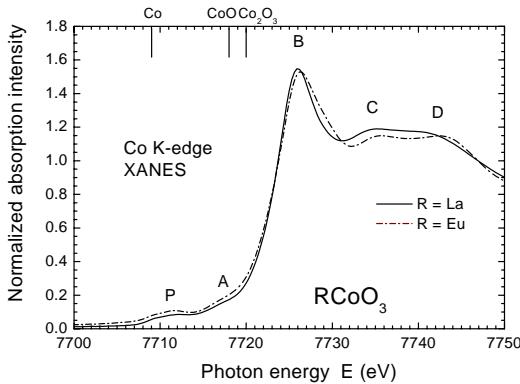


Fig. 2. Co K-edge XANES for RCO_3 ($R = \text{La, Eu}$). The threshold edge energy of two standards (CoO , Co_2O_3) and Co metal foil are indicated.

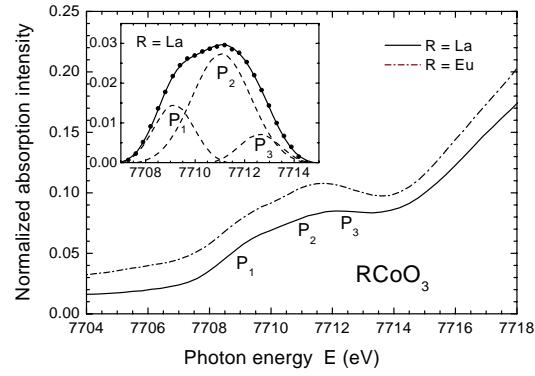


Fig. 3. Low intensity pre-edge region of Co K-edge XANES for RCO_3 ($R = \text{La, Eu}$). The pre-edge P can be fitted with three peaks P_1 , P_2 and P_3 (inset for LaCoO_3).

of the edge with features labeled as A, B, C, D can be explained by the $4p$ partial density of states, broaden by the finite lifetime of $1s$ core hole. The Co $4p$ states, like Mn $4p$ state, are highly delocalized and extend over several Co atoms. The observed small pre-edge feature P is corresponding to $1s$ - $3d$ dipole transition, which is weakly allowed through the hybridization of $4p$ states with $3d$ states of neighboring Co atoms.

Fig. 3 shows the low intensity pre-edge P feature for RCO_3 ($R = \text{La, Eu}$). For LaCoO_3 at 300 K, pre-edge P can be fitted with three peaks P_1 , P_2 , P_3 after subtracting the smooth background, with energy separation $P_2 - P_1 = 2.0 \text{ eV}$ and $P_3 - P_2 = 1.5 \text{ eV}$. Since the ground state is a Co^{III} LS state with heavily mixed d^6 and $d^7 \underline{L}$ ($t_{2g}^6 e_g^1$), the thermally excited IS state at 300 K may be a mixed $t_{2g}^5 e_g^1$ and $d^7 \underline{L}$ ($t_{2g}^6 e_g^1$ or $t_{2g}^5 e_g^2$), with almost filled $t_{2g\downarrow}$ states. This indicates that the allowed $1s$ - $3d$ dipole transition is into unfilled $t_{2g\downarrow}$ and e_g states. The three peaks P_1 , P_2 , P_3 are probably corresponding to unfilled $t_{2g\downarrow}$, $e_g\downarrow$ and $e_g\downarrow$ states, respectively [8].

This work was supported by NSC of R.O.C. under contract Nos. NSC90-2112-M007-054 & -056.

References

- [1] M. A. Korotin et al., Phys. Rev. B 54 (1996) 5309.
- [2] T. Saitoh et al., Phys. Rev. B 55 (1997) 4257.
- [3] S. Yamaguchi et al., Phys. Rev. B 55 (1997) R8666.
- [4] Z. Y. Wu et al., Phys. Rev. B 56 (1997) 2228.
- [5] M. Itoh et al., Physica B 281&282 (2000) 510.
- [6] L. Sudheendra et al., Chem. Phys. Lett. 340 (2001) 275.
- [7] O. Toulemonde et al., J. Solid State Chem. 158 (2001) 208.
- [8] J. Y. Chang et al., Phys. Rev. B, submitted (2002).