

2D ferromagnetic fluctuation above T_N in orbital-ordered LaMnO₃

C. T. Chen, H. H. Wu, B. N. Lin, Y. Y. Hsu, H. C. Ku ¹

Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C.

Abstract

Onset of two-dimensional (2D) ferromagnetic (FM) short range order with $T_{2D} \simeq 150$ K above A-type antiferromagnetic (AF) Néel temperature $T_N = 139$ K was observed in 100-G low field for orbital-ordered LaMnO₃. The A-type AF long range order is stabilized through strong 2D basal plane FM superexchange coupling of orbital-ordered e_g electrons and weak c-axis AF coupling. Both T_{2D} and T_N are field dependent, and merge in 1-T high field around 130 K. Mn K-edge X-ray absorption near-edge spectrum (XANES) for orbital-ordered LaMnO₃ at room temperature indicates a pre-edge splitting of 2.0 eV due to weakly allowed 1s-3d dipole transition.

Key words: A-type AF order; orbital order; 2D FM short range fluctuation

LaMnO_{3+δ} is the parent compound of colossal magnetoresistance (CMR) materials La_{1-x}A_xMnO_{3+δ} [1-9]. In the stoichiometric LaMnO₃ Mott insulator, all the Mn ions are trivalent with four 3d electrons with configuration $t_{2g}^3 e_g^1$, due to MnO₆ octahedral crystal field and strong Hund's rule coupling. The three t_{2g} electrons are well localized, while the lone e_g electron occupies one of the doubly degenerate e_g orbitals which are strongly hybridized with the oxygen 2p orbitals. The Mn³⁺ ion has both spin and orbital degrees of freedom. The orbital degree of freedom is spontaneous frozen by the real space ordering of e_g orbitals accompanied by the cooperative Jahn-Teller lattice distortion with an orbital ordering temperature $T_{OO} \simeq 780$ K [3-5]. The spin and orbital degrees of freedom are strongly coupled and the Mn spins are ordered antiferromagnetically (A-type AF order) through anisotropic superexchange interaction below $T_N \simeq 140$ K. The A-type AF structure is stabilized by the strong 2D basal plane ferromagnetic (FM) superexchange coupling, and by the weak c-axis AF coupling [1-9].

In order to check the possibility of 2D FM short range fluctuation with T_{2D} above T_N , the LaMnO_{3+δ} samples ($\delta = 0, 0.07, 0.1$) were synthesized by standard

solid-state reaction. The oxygen stoichiometric parameter δ is controlled by annealing samples at 1000°C in flowing Ar with 5% H₂, in air or in O₂. The structural studies indicate that there are no interstitial oxygen sites for LaMnO_{3+δ}. With fully occupied oxygen sublattice and La/Mn vacancies, the correct composition is La_zMn_zO₃ with $z = 3/(3+\delta)$, and maximum formula unit volume $V_{f.u.}$ ($= V_o/4$ for orthorhombic phase (Pbnm) and $= V_r/6$ for rhombohedral (R $\bar{3}$ c) phase) is achieved at the stoichiometric LaMnO₃ [1,2]. By comparing with reported data, the $\delta \simeq 0$ is achieved for Ar/H₂ sample with $V_{f.u.} = 61.24$ Å³, $\delta \simeq 0.07$ for air sample with $V_{f.u.} = 59.55$ Å³, and $\delta \simeq 0.1$ for O₂ sample with $V_{f.u.} = 58.90$ Å³ [9].

The XANES for the LaMnO_{3+δ} samples are shown in Fig. 1. The energy is calibrated by a Mn metal foil with threshold edge energy of $E_0 = 6537.4$ eV. The E_0 for three standards MnO (Mn²⁺), M₂O₃ (Mn³⁺) and MnO₂ (Mn⁴⁺) indicates a substantial shift of E_0 with increasing Mn formal valence. Since the spectra of three LaMnO_{3+δ} samples show a substantial shift of the edge energy which agree well with previously reported LaMnO_{3+δ} data [6-8], this indicates that the sample annealed in Ar/H₂ is very close to $\delta = 0$ with Mn³⁺.

The molar magnetic susceptibility χ_m (T) in low 100-

¹ E-mail: hcku@phys.nthu.edu.tw

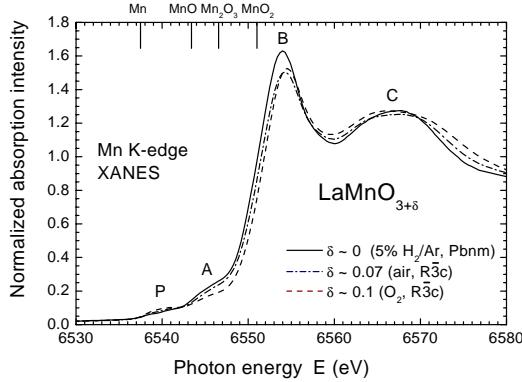


Fig. 1. Mn K-edge XANES for $\text{LaMnO}_{3+\delta}$. The threshold edge energy of three standards and Mn metal foil are indicated.

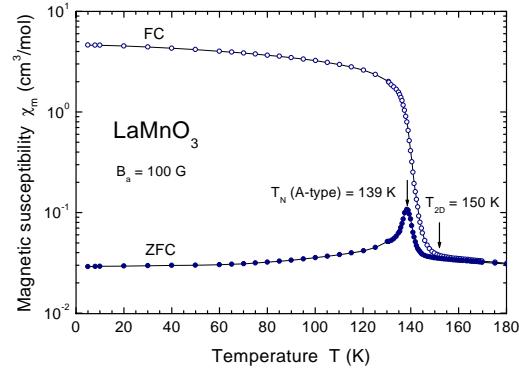


Fig. 2. Molar magnetic susceptibility $\chi_m(T)$ in 100-G field (ZFC and FC modes) for LaMnO_3 . 2D FM short-range order T_{2D} is defined as the merging point of ZFC and FC curves.

G zero-field-cooled (ZFC) and field-cooled (FC) mode for the stoichiometric, orthorhombic LaMnO_3 sample are shown in Fig. 2. Sharp A-type AF transition in ZFC curve with T_N of 139 K is observed with small peak value. A 2D FM short range order is observed from the merging point of ZFC and FC curves with $T_{2D} \simeq 150$ K. Both T_{2D} and T_N are field-dependent, with $T_{2D} \simeq 142$ K, $T_N = 137$ K in 1-kG field, and $T_{2D} \simeq T_N \simeq 130$ K in high field of 1 T. The FC data in Fig. 2 indicates a weak ferromagnetic (WFM) contribution for LaMnO_3 . The hysteresis loop at 5 K for LaMnO_3 [9] shows a soft, WFM behavior with small residual magnetic moment of m_r of 0.11 μ_B/Mn for LaMnO_3 , which is smaller than the aligned magnetic moment of 3.49 μ_B/Mn for A-type AF order in LaMnO_3 [1]. The WFM contribution may originate from weak but non-perfect c-axis AF coupling of t_{2g} electrons between two ferromagnetic planes. However, the possibility of double exchange $\text{Mn}^{4+}/\text{Mn}^{3+}$ contribution cannot be

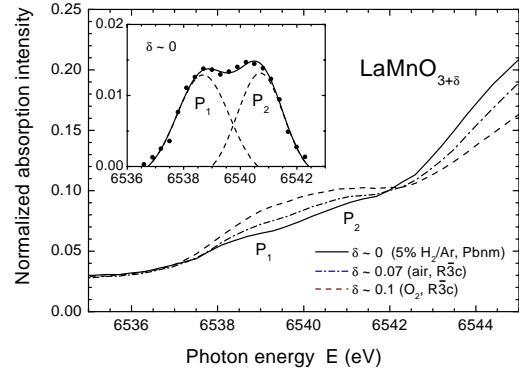


Fig. 3. Low intensity pre-edge region of Mn K-edge XANES for $\text{LaMnO}_{3+\delta}$. The pre-edge P for LaMnO_3 (inset for $\delta \simeq 0$) can be fitted with two peaks P_1 and P_2 .

excluded.

The room temperature K-edge XANES data shown in Fig. 1 is sharp with a long, low energy tail. The main edge is attributed to $1s-4p$ dipole transition to Mn $4p$ states. The shape of the edge with features A, B, C can be explained by the $4p$ partial density of states from LSDA+U calculation, which is broaden by the finite lifetime of $1s$ core hole [6]. The calculation indicates that the $4p$ states are highly delocalized and extend over several Mn atoms. The small pre-edge feature P (Fig. 3) is corresponding to $1s-3d$ dipole transition, which is weakly allowed through the hybridization of $4p$ states with $3d$ states of neighboring Mn atoms [6,7]. The low intensity pre-edge P feature for the orbital-ordered LaMnO_3 at 300 K can be fitted with two peaks P_1 and P_2 after subtracting the smooth background, with P_2-P_1 energy separation of 2.0 eV [9]. P_1 is corresponding to a transition to empty majority spin $e_{g\uparrow}$ states on the neighboring Mn ions and P_2 is a transition to $e_{g\downarrow}$ and $t_{2g\downarrow}$ minority spin states [6-9].

The research is supported by NSC of ROC under contract Nos NSC90-2112-M007-054 & -056.

References

- [1] C. Ritter et al., Phys. Rev. B 56 (1997) 8902.
- [2] J. Rodriguez-Carvajal et al., Phys. Rev. B 57 (1998) 3189.
- [3] Y. Murakami et al., Phys. Rev. Lett. 81 (1998) 582.
- [4] Y. Tokura and N. Nagaosa, Science 288 (2000) 462.
- [5] E. Saitoh et al., Nature 410 (2001) 180.
- [6] I. S. Elfimov et al., Phys. Rev. Lett. 82 (1999) 4264.
- [7] F. Bridges et al., Phys. Rev. B 61 (2000) R9237.
- [8] A. Yu. Ignatov et al., Phys. Rev. B 64 (2002) 014413.
- [9] C. T. Chen et al., Phys. Rev. B, submitted (2002).