

Mn K-edge XANES of hexagonal manganites $RMnO_3$ ($R = Sc, Y$)

C. T. Wu, Y. Y. Hsu, B. N. Lin, H. C. Ku ¹

Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C.

Abstract

Mn K-edge X-ray absorption near-edge spectra (XANES) and magnetic studies for ferroelectromagnetic compounds $RMnO_3$ ($R = Sc, Y$) are reported. $ScMnO_3$ shows stronger $d - p$ hybridization with a triangular antiferromagnetic (AF) order of $T_N = 133$ K and a spin reorientation $T_{sr} = 23$ K, as compared to $T_N = 74$ K for $YMnO_3$. The identical main threshold edge energy of 6545 eV indicates Mn^{3+} character. Small pre-edge features with energy separation $P_2 - P_1$ of 2.27 eV for $ScMnO_3$ and 2.72 eV for $YMnO_3$ is from the $1s-3d$ dipole transition, which is weakly allowed through the hybridization of Mn $4p$ with $3d$ states of neighboring Mn atoms. The larger P_1 peak is corresponding to transition into empty e'_\downarrow and e''_\downarrow minority states, and the smaller P_2 peak is into leftover e'_\downarrow states.

Key words: ferroelectromagnetic materials; triangular antiferromagnetism; XANES

The rare earth hexagonal $RMnO_3$ manganites ($P6_3cm$) are ferroelectromagnetic materials possessing both ferroelectric (FE) and antiferromagnetic (AF) ordering. The FE transition T_{FE} occurs at high temperature around 600-1000 K, while triangular AF Néel temperature T_N occurs below 70-130 K [1-7]. The Mn^{3+} ion ($3d^4$, $S = 2$) is subject to a trigonal bipyramidal crystal field where $3d$ levels are splitted into a_1 and two doubly degenerate e states (e' and e''), with four d electrons in e_\uparrow majority spin states by Hund's rule. The FE polarization is caused by the displacement of ions along the hexagonal c-axis. The AF structure below T_N is a 120° triangular AF configuration which coexists and strongly couples with FE phase. For nonmagnetic rare compounds, $YMnO_3$ shows a simple $T_N \simeq 70$ K [2-6]. On the contrary, complex spin reorientation with confusing reorientation temperature T_{sr} below $T_N \simeq 130$ K were reported for $ScMnO_3$ [1-3,5,7]. Here we report the Mn K-edge XANES for these two interesting compounds.

Samples were synthesized by standard solid-state reaction. The measured hexagonal formula unit volume $V_{f.u.} = V_h/Z$ ($Z = 6$) of 54.84 \AA^3 for $ScMnO_3$ and 61.94

\AA^3 for $YMnO_3$ indicate that the samples prepared are close to 113 stoichiometric composition with trivalent Mn^{3+} [7]. The extremely small volume of $ScMnO_3$ indicates stronger MnO_5 crystal field and Mn-O 3d-2p orbital hybridization.

The molar magnetic susceptibility $\chi_m(T)$ in 1-kG field with zero-field-cooled (ZFC) and field-cooled

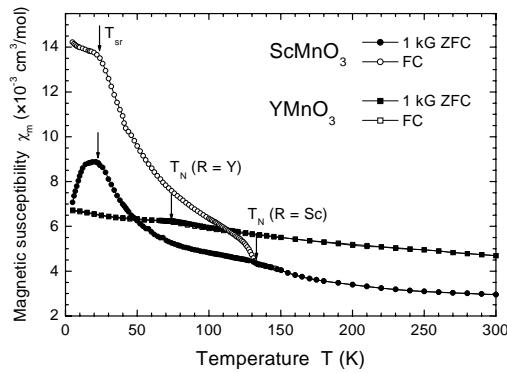


Fig. 1. Molar magnetic susceptibility $\chi_m(T)$ in 1-kG field (ZFC and FC modes) for $ScMnO_3$ and $YMnO_3$.

¹ E-mail: hcku@phys.nthu.edu.tw

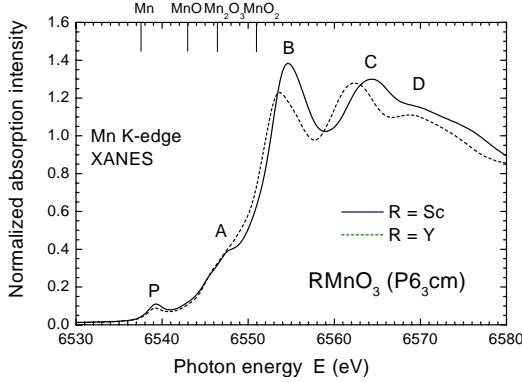


Fig. 2. Mn K-edge XANES for RMnO_3 ($\text{R} = \text{Sc}, \text{Y}$). The threshold edge energy of three standards and Mn metal foil are indicated.

(FC) modes for ScMnO_3 and YMnO_3 are shown in Fig. 1. The kink near 73 K with almost identical ZFC and FC values indicates AF order with $T_N = 74$ K for YMnO_3 . For ScMnO_3 , the merging point of ZFC and FC curves with larger FC value indicates a $T_N = 133$ K with weak ferromagnetic (WFM) contribution from non-perfect AF alignment in the hexagonal basal plane. No spin reorientation is observed in YMnO_3 . For ScMnO_3 , a spin reorientation $T_{sr} \simeq 23$ K is observed. This T_{sr} value is close to 22 K observed from SHG spectroscopy [2]. More spin reorientations may exist at higher temperature but are difficult to identify in the magnetic measurements [2,3,7]. The neutron diffraction measurement indicates that the ordered Mn moments are aligned along the hexagonal [100] axis for ScMnO_3 with a $T_{sr} \simeq 75$ K [3]. The low temperature at $T = 5$ K magnetization data for ScMnO_3 shows a small residual magnetic moment m_r of $3 \times 10^{-3} \mu_B/\text{Mn}$ [7]. On the contrary, almost pure AF behavior with negligible m_r of $2 \times 10^{-5} \mu_B/\text{Mn}$ was observed for YMnO_3 [7]. These values are much smaller than the ordered magnetic moment of 3.54 μ_B/Mn for ScMnO_3 and 2.90 μ_B/Mn for YMnO_3 [3].

The Mn K-edge XANES at room temperature is shown in Fig. 2. The energy is calibrated by a Mn metal foil with threshold edge energy of $E_0 = 6537.4$ eV. The E_0 for three standards MnO (Mn^{2+}), Mn_2O_3 (Mn^{3+}), and MnO_2 (Mn^{4+}) indicate a substantial shift of E_0 with increasing Mn formal valence. Almost identical $E_0 = 6545$ eV for Sc and Y samples indicate trivalent Mn^{3+} . The XANES is sharp with a long, low energy tail. The main edge is attributed to $1s$ - $4p$ dipole transition to Mn $4p$ states. The shape of the edge with features labeled as A, B, C, D can be reasonably explained by the $4p$ partial density of states, which is broaden by the finite lifetime of $1s$ core hole. The $4p$ states are highly delocalized and extend over several Mn atoms

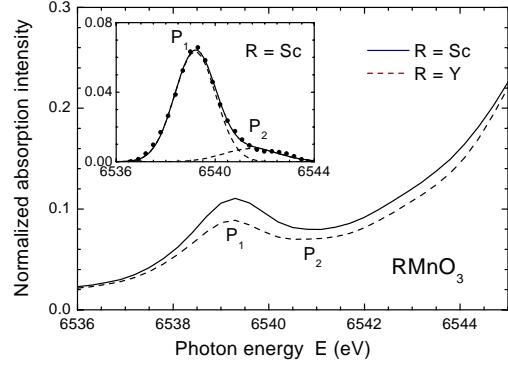


Fig. 3. Low intensity pre-edge region of Mn K-edge XANES for RMnO_3 ($\text{R} = \text{Sc}, \text{Y}$). The pre-edge P can be fitted with two peaks P_1 and P_2 (inset for ScMnO_3).

and the small pre-edge feature P observed is corresponding to $1s$ - $3d$ dipole transition which is weakly allowed through the hybridization of Mn $4p$ states with $3d$ states of neighboring Mn atoms.

Fig. 3 shows the low intensity pre-edge P feature. The pre-edge P can be fitted with two peaks P_1 and P_2 after subtracting the smooth background, with energy separation $P_2 - P_1 = 2.27$ eV for ScMnO_3 and 2.72 eV for YMnO_3 . Since the Mn d levels in MnO_5 crystal field are splitted into a_1 and two doubly degenerate e states (e' and e'') with four d electrons in e_{\uparrow} majority spin states. The LSDA+U calculation indicates that the allowed $1s$ - $3d$ dipole transition is into unfilled e_{\downarrow} and a_1 states [4]. The transition into a_1 states is unfavorable from orbital wavefunction overlap point of view, so the larger P_1 peak appears corresponding to transition into empty e'_{\downarrow} and e''_{\downarrow} minority states and the smaller P_2 peak from leftover e'_{\downarrow} states [7]. The smaller peak intensity for YMnO_3 is due to larger volume with weaker hybridization of Mn $4p$ states with Mn $3d$ states of neighboring atoms.

The work was supported by the NSC of R.O.C. under contracts NSC90-2112-M007-054 & -056.

References

- [1] M. Bieringer and J. E. Greedan, J. Solid State Chem. 143 (1999) 132.
- [2] M. Fiebig et al., Phys. Rev. Lett. 84 (2000) 5620.
- [3] A. Munoz et al., Phys. Rev. B 62 (2000) 9498.
- [4] J. E. Medvedeva et al., J. Phys.: Condens. Matter 12 (2000) 4947.
- [5] D. G. Tomuta et al., J. Phys. Condens. Matter 13 (2001) 4543.
- [6] T. Katsufuji et al., Phys. Rev. B 64 (2001) 104419.
- [7] C. T. Wu et al., Phys. Rev. B, submitted (2002).