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Abstract

Using a sum-rule method and a time-dependent variational method, we study the breathing mode collective-
excitation frequency of a trapped Bose-Einstein condensate. We show that the result for the three-dimensional trap
applies also that to the ideal two- or one-dimensional trap, where the axial or radial degree of freedom is completely
neglected. In the case of a realistic two- or one-dimensional trap, we obtain the lowest order correction for the
collective-excitation frequency due to the finiteness of the trap frequency in the tightly trapped direction. We also
show numerical results for the collective-excitation frequencies using parameters relevant to recent experiments.
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Bose-Einstein condensates (BEC) in harmonic traps
have been of great interest because of their rich many-
body phenomena such as collective excitations [1–9],
which are significantly affected by the inter-atom in-
teraction. Recently, a two-dimensional (2D) [10] or a
one-dimensional (1D) [10–12] BEC has been success-
fully fabricated and collective excitations in the low
dimensional traps have been interested. In this paper,
we study the breathing mode (m = 0 mode: m is the
magnetic quantum number) collective-excitation fre-
quency of a BEC in a 2D or 1D trap within the mean-
field theory for the condensate at zero temperature, by
employing two analytical methods: a sum-rule method
[1,6,7] and a time-dependent variational method [4].

The sum-rule method for the breathing mode collec-
tive excitation in an axially-symmetric trap has been
introduced in Ref. [6] and [7]. By using the method,
we obtain the exact upper bound for the collective-
excitation frequency for arbitrary number of atoms as
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where, λ ≡ ωz/ω⊥ (ω⊥ ≡ ωx ≡ ωy ≡ 1) is the asymme-
try parameter of an axially-symmetric harmonic trap,
T⊥(z) is the x or y (z) component of the kinetic energy,
U⊥(z) is the x or y (z) component of the trap poten-
tial energy, and 〈· · ·〉 denotes the mean value per atom
over the condensate wave function. Here, we have used
the virial theorem [9] such that 〈Hint〉/2 = 〈Ul〉 − 〈Tl〉
(l =⊥ or z), where Hint is the inter-atom interaction.

On the other hand, the time-dependent variational
method [4], which is based on a Gaussian variational
wave function for the condensate, gives an approximate
collective-excitation frequency which is the same as Eq.
(1) except that the mean value in Eq. (1) is calculated
over the Gaussian variational wave function.

Both results reproduce the exact results:

ω = ω⊥

√
2 + 3λ2/2 −

√
9λ4 − 16λ2 + 16/2 (2)
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obtained in the Thomas-Fermi (TF) limit 〈T⊥〉 =
〈Tz〉 = 0 for a three-dimensional (3D) trap [1], ω = 2
obtained in a purely 2D trap 〈Tz〉 = 〈Uz〉 = ∞ (ω
does not depend on the number of atoms in the purely
2D trap) [2,3], and ω =

√
3λ obtained in the TF limit

〈Tz〉 = 0 for a purely 1D trap 〈T⊥〉 = 〈U⊥〉 = ∞ [5,8].
One may be aware that the result in the purely 2D

(1D) trap is different from ω =
√

10/3 (ω
√

5/2λ) [1],
which is the 2D (1D) limit λ → ∞ (0) of Eq. (2) for the
3D trap. Because of the virial theorem, if we first take
the TF limit in a 3D trap, the energy scales in the axial
and radial direction are comparable even if we take the
2D or 1D limit (λ → ∞ or 0) after the TF limit. In this
case, by contrast to the purely 2D or 1D case, the con-
densate can oscillate not only to the weakly trapped
direction but also to the tightly trapped direction and
can reduce the interaction energy by the out-of-phase
oscillation. As a result, the collective-excitation fre-
quency in the 2D or 1D limit of the TF limit for a 3D
trap is slightly smaller the frequency in the purely 2D
or 1D trap.

Now, let us consider the case with finite ωz and with
large but finite N (N : number of atoms) in low di-
mensional traps. In the 2D trap with large N , we as-
sume 〈Tz〉, 〈Uz〉 � 〈Hint〉/2 ≈ U⊥ � 〈T⊥〉, which is

equivalent to λ � √
Naλ

1
4 � 1/(

√
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1
4 ) because

〈Uz〉 ∝ λ, 〈Hint〉 ∝ λ
1
4
√

Na, and 〈T⊥〉 ∝ 1/(λ
1
4
√

Na).
Up to the first order of 〈Hint〉/〈Uz〉 or 〈T⊥〉/〈U⊥〉, we
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by the sum-rule method, where a is the s-wave scat-
tering length in unit of the harmonic oscillator length√

h̄/Mω⊥ ≡ 1 (M is the atomic mass), and ω ≈
2 − 〈Hint〉G/(16〈Uz〉G) ≈ 2 −

(
λ− 3

4 /4(8π)
1
4
)√

Na by
the time-dependent variational method.

In the 1D case, we assume 〈T⊥〉, 〈U⊥〉 � 〈Hint〉/2 ≈
Uz � 〈Tz〉, which is equivalent to 1 � λNa �
λ2/(Na) because 〈U⊥〉 ∝ 1, 〈Hint〉 ∝ (λNa)

2
3 ,

and 〈Tz〉 ∝ [λ2/(Na)]
2
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by the sum-rule method and ω ≈√
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by
the time-dependent variational method.

Finally, we present numerical values of the collective-
excitation frequency for three sets of parameters that
are relevant to recent experiments [10–12]. Our results
for parameter sets A and B are close to recent results
(ω/ωz)2 = 2.85 and 2.91 in Ref. [8] based on another
sum-rule approach and hydrodynamic equations in 1D.

Collective Excitation Frequency

Sum-rule Sum-rule Variational Variational

(perturbation) (perturbation)

Parameter set A 2.89 2.84 2.84 2.83

Parameter set B 2.96 2.94 2.91 2.93

Parameter set C 2.61 1.52 2.56 1.48

Table 1

Our results for the breathing mode collective-excitation fre-

quencies for three sets of parameters relevant to recent exper-

iments. From the left to right, we show results obtained by

the sum-rule method [Eq. (1)] with a numerical solution of the

GP equation, the lowest order perturbation for the purely 1D

results by the sum-rule method, results obtained by the time-

dependent variational method, and the lowest order perturba-

tion for the purely 1D results by the time-dependent varia-

tional method. Parameter set A: 104 23Na atoms in a harmonic

trap with ω⊥ = 2π × 360 Hz and ωz = 2π × 3.5 Hz, which

are relevant to Ref. [10]. Parameter set B: 104 7Li atoms in

a harmonic trap with ω⊥ = 2π × 4970 Hz and ωz = 2π × 83

Hz, which are relevant to Ref. [11]. Parameter set C: 3 × 104

87Rb atoms in a harmonic trap with ω⊥ = 2π × 715 Hz and

ωz = 2π× 14 Hz, which are relevant to Ref. [12]. (Our pertur-

bational analysis fails for parameter set C.)
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