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Abstract

In polycrystalline samples of superconducting MgCNi3, the critical temperature and the specific heat were measured
as a function of magnetic field. A WHH-like shape of Hc2(T ) is observed. The Hc2(T ) and specific heat data are
discussed on a qualitative level in terms of effective single- and multi-band models based on an orbital assignment
of the disjoint Fermi surface sheets derived from LDA full potential electronic structure caclculations.
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Superconductivity and ferromagnetism have been
believed to be incompatible over any extended
temperature range until few specific examples –
RuSr2GdCu2O8, ZnZr2 and UGe2 – have arisen in
the past 2-3 years. The discovery of superconductivity
above 8 K in MgCNi3[1], which is primarily the ferro-
magnetic metal Ni, could provide a new and different
example. This compound was shown to be near ferro-
magnetism [2], requiring only small hole-doping. This
system provides an interesting mean to probe coupling,
and possible coexistence, of these two forms of collec-
tive behavior without the requirement of pressure.

To understand the character of the quasiparticles
involved in the superconductivity, we have first carried
out LDA electronic structure calculations using a full
potential minimum basis local orbital scheme (FPLO)
[4] as well as an FLAPW code[3], leading to almost
identical results, in good agreement with the results of
Ref. [6]. Furthermore, some thermodynamic properties
have been measured on a polycrystalline sample which
will be reported below. The LDA calculational details
are given in Ref. [2]. To describe the steep singularity
near the Fermi energy EF accurately, 1771 k-points in
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the IBZ were used. The band-wise decomposed density
of states (DOS) and the corresponding Fermi surface
sheets (FSS) are shown in Fig. 1. The peak at about 50
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Fig. 1. The two Fermi surfaces of MgCNi3 and the correspond-

ing band resolved density of states near the Fermi level. “Band

1” corresponds to the FSS in the topleft panel, “band 2” to

the topright FSS.
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Fig. 2. Measured specific heat of MgCNi3 in magnetic field

up to 8 Tesla. The intersection of the solid line gives the

Sommerfeld parameter γS (H = 0).

meV below EF reveals predominantly (about 90%) Ni
3d character and is related to a single band forming the
clover leaf shaped FS (see topleft panel Fig. 1). For the
DOS derived bare Sommerfeld constant we find 11.1
mJ/moleK2, with about 85% contribution from FSS 1.

Polycrystalline samples of MgCNi3 were prepared
by a solid state reaction. A pellet pressed from Mg, C
and Ni powders was wrapped in a Ta foil and sintered
in a quartz vial in Ar atmosphere at 600◦ C and 900◦

C. In this study, a sample with the nominal formula
Mg1.2C1.6Ni3 was investigated. The lattice constant of
the prepared sample was determined as a = 0.38107
nm by a Rietveld analysis being consistent with pre-
vious reports [1,5]. A superconducting transition tem-
perature of Tc = 7.0 K was found by ac susceptibility,
electrical resistance and specific heat measurements.
In Fig. 2 specific heat data, cp/T vs. T2 are shown for
applied magnetic fields up to 8T.

With the experimentally measured renormalized
Sommerfeld constant γS at a value of ≈29 mJ/moleK2

or even 40 mJ/moleK2 at H =8 Tesla (see Fig. 2), we
arrive at a sizable coupling constant averaged over all
Fermi surface sheets of about λ̄ = 1.6 (2.6 at H=8
Tesla), if corrections due to the strong energy depen-
dence of N1(E) (see Fig. 1) are neglected. Refering
to the partial DOS Ni(0) mentioned above, that to-
tal coupling constant can be decomposed into the
contributions from the two bands:

λ̄ = 1.6 to 2.6 =
1

N(0)

∑

i

Ni(0)λi = 0.85λ1 + 0.15λ2,

where λ1(2) is the coupling constant for FSS 1 (2),
respectively. According to Ref. [6], λ2 is large (∼ 3)
due to strong coupling with low-frequency rotational
modes of the Ni-octahedra. Due to the small prefactor
for band 2, we arrive at strong coupling in both bands
even for a large value, say λ2 = 2. The origin of the
strong coupling λ1 ≈1.5 to 2.7 in band 1 is unclear at
present. If it corresponds to strong coupling with ferro-
magnetic spin fluctuations, p-wave superconductivity
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Fig. 3. The T=0 upper critical field vs. transition temperature

Tc; data available from the literature have been included. The

filled square denotes our sample

with a T 3 contribution at low T in the cp-data would
be expected. However, the data shown in Fig. 2 point
to s-wave superconductivity since we observe a small
but finite gap ≈ 3.1Tc slightly below 3.52Tc (BCS).
Another unresolved problem is the large ratio of the
specific heat jump at Tc: ∆cp/γSTc ≈ 2.3 to 1.67 com-
pared with 1.43 (BCS). It cannot be explained within
a standard two-gap (band) model even for strong cou-
pling [7]. Anyhow, the jump ratio might be enhanced
by the strong E-dependence of N1(E) (see Fig. 1).

Finally, the Hc2 ∝ T 2
c dependence of the upper crit-

ical field points to a clean limit regime (see Fig. 3).
This is somewhat surprising in view of the mesoscopic
disorder which is responsible for the high resistivity.
The WHH (Wertheimer-Helfand-Hohenberg)-shape of
Hc2(T ), i.e. without a clear upward curvature at Tc [7],
is ascribed to weak interband scattering between FSS
1 and 2. Then the value of Hc2(0) ≈12 Tesla stems
mainly from strongly interacting electrons on FSS 2.

In conclusion, we arrive at a picture where two
strongly competing orderings, superconductivity and
magnetism, coexist in almost decoupled FSS’s. This
ressembles the behavior in magnetic borocarbides [8].
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