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Abstract

Some experimental data on PdH(D) at 300K, shows resistivity (ρ) less than the pure Pd. Moreover Tc greater
than 9K reported in literature has been measured, hence a phenomenological description of the ρ for highly loaded
PdH(D) system at 300K has been developed. This approach uses a parallel model of two concurrent electrical
transport processes: i) ρ has a linear raise with the concentration x = H/Pd, due to the increase of Pd relative
lattice volume ii) ρ has an exponential decrease versus x due to superconducting fluctuations at very high x in
PdH(D). Superconducting state appears at xc(300K). Inverse isotopic effect for 0.6≤ x ≤0.96 changes to normal
isotopic effect at x ≈ 1.
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1. Introduction

Relative resistance R/R0 of the PdHx versus stoi-
chiometry x, where R0 is the resistance of pure Pd,
is usually interpreted with the Mott and the modified
Mott model for metals and metal-alloys [1]. This model
considers two phases: α-phase (0≤ x ≤0.02) , β-phase
(x≥0.6) and their coexistence [α + β]-phase (0.02≤ x
≤0.6) in Pd, but it is not able to explain the experimen-
tal R/R0 values less than unit at 300K [2][3], at 100K [4]
and Tc in stable PdHx (x≥1) samples [5] much higher
than 9K previously measured [6], therefore a new phe-
nomenological approach to explain the Pd-H(D) elec-
trical resistance behaviors for x≥1 at 300K will be pro-
posed. The Pd-H(D) resistance consists of two different
electric transport mechanisms. Increasing x, the first
correlates the R/R0 increasing with the lattice struc-
ture change during the Octahedral (O) sites filling up
and the second describes the exponential decreasing of
R/R0.
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2. Discussion

In the first mechanism the increasing of x affects the
interaction between the H and Pd lattice with con-
sequent increasing of the electron-phonon scattering.
Moreover the slow motion (acustic phonon) of Pd lat-
tice is very sensitive to the H+ fast hopping motion be-
tween O-sities [7]. The increasing of R/R0 vs x can be
correlated with the linear lattice expansion in Pd-H(D)
for 0≤ x ≤x0 where x0 is the stoichiometric value when
R/R0 has the maximum value. We describe R/R0 lin-
ear change in the first eq.1 where the parameter m is
directly correlated with the increasing of Pd relative
volume. For the second mechanism the following evi-
dences must be considered.

The electronic configuration changes due to the fill-
ing up of the d-band vacancies, hence a reduction of
s-d scattering and R/R0 would be expected [3][8]. H
vibration around their O-sities at very high frequen-
cies (optical phonon) probably affect the normal resis-
tance [9]. Because of the diffusion of H, these optical
modes are local and independent from the Pd lattice
vibrations [7]. Increasing x, the density of H in the O-

Preprint submitted to LT23 Proceedings 21 July 2002



0.0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2

R
/
R
0

x

X
0

X
c

T=300K

Fig. 1. R/R0 fit of experimental data for PdH and PdD vs x

sites increases and these optical modes should become
non local. These optical modes are correlated with the
superconductivity in the Pd-H(D,T) systems [9].

Moreover, the following data should be consid-
ered: i) unexplained experimental evidences (R/R0

≤ 1) at 300K; ii) susceptibility measurements show
a paramagnetic-diamagnetic transition above x=0.7
[10]; iii) well known superconducting transition at
low temperature and high x [6]. iv) Tc≥9K for stable
samples with x ≥1 [5].

A fluctuation process of the superconducting state
that is responsible for Pd-H(D) electrical resistance de-
crease (x ≥ x0) is suggested and consequently conden-
sation of macroscopic superconducting state occurs at
x = xc [11]. These processes are described:

(
R

R0

)
lin

= 1 + mx ;
(

R

R0

)
exp

= βe−γ(x−x0) (1)

the second eq.1 considers the thermodynamic fluc-
tuation of the superconducting state:

γ (x − x0) =
U

KT
; U =

(
H2
c (T )ξ3(T )

8π

)
· n (2)

where U is the free-energy increment [11] or the
condesation energy of the superconducting domains
around Tc, n is the number of domains at fixed concen-
tration x in x0 ≤ x ≤ xc. Using equations (2):

γ(T ) =
H2
c (T )ξ3(T )

KT
; n = (x − x0) (3)

the prefactor β [11] is correlated to the frequency
described in the fluctuation theory. The value x=xc,
where R/R0 is zero, is the end of the thermodynamic
fluctuations and the Pd-H(D,T) system is in a macro-
scopic superconducting state. Hence, the U value cal-
culated at xc is the condensation energy of the macro-
scopic superconducting state. The fit of the experimen-
tal R/R0 data are shown in fig.1 and the Tc vs xc is
shown in fig.2.
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Fig. 2. Tc versus xc for H (◦),D (•) and T(�) experimental

data plotted with the theoretical results

3. Conclusion

Results of the proposed phenomenological theory
that consider the simultaneity of two processes as the
parallel beetwen the two R/R0 (linear and exponen-
tial) are:

i) Tc=300K for γH=12.4, γD=11.2, xc(H)=1.6,
xc(D)=1.7. The condensation energy of the supercon-
ducting states is UH=270meV and UD=273meV

ii) xc(D) ≥ xc(H) for Tc(D)=Tc(H)=300K shows a
normal isotopic behavior (Tc(D) ≤ Tc(H)) (fig.2);

iii) xψ where Tc(D)=Tc(H) is the threshold point
from the inverse (Tc(D) ≥ Tc(H)) to normal (Tc(D) ≤
Tc(H)) isotopic behavior;

There is a correlation between condensation energy
values and experimental data [12] on potential bar-
rier between O-sites and T-sites in PdH. Probably to
achieve high Tc in highly loaded PdH(D) system the
occupation of T-sities is important.
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