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Abstract

Current-voltage (J-V') characteristics are numerically investigated at finite temperature for a point contact con-
sisting of two Peierls conductors (P) separated by an insulator in the conventional tunnel Hamiltonian approach.
Here P is a conductor with a charge density wave (CDW). The J-V characteristics depend on the CDW phases in
the mean field approximation where the phases (¢) and energy gaps (A) in both Peierls conductors are assumed to
be equal, respectively. The current J is a periodic function of the phase ¢ with a period 7, and has a discontinuous
jump at eV = 2A (¢ # 0). The jump increases as the phase ¢ increases. For 0 < eV < 2A the current J decreases
as the phase ¢ increases, but while for eV > 2A the current J increases as the phase ¢ increases.
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1. Introduction

Charge density wave (CDW) can be characterized by
the complex order parameter. So far, the fluctuation of
the CDW phase () in bulk systems has received much
attention, while the phases in the tunnel junctions have
been investigated little in the mean field approxima-
tion [1-4]. Artemenko and Volkov [1] and Munz and
Wonneberger [2] have investigated the current J for
the junction consisting of two Peierls conductors (P)
separated by an insulator in three dimensions, and ne-
glected a part of the current J dependent on the phases
by averaging. We reinvestigate the current J at finite
temperature (T > 0) for a one-dimensional point con-
tact where we need not average the current J like them,
and how the neglected term influences on the current.

2. Methods

The current J is calculated at finite temperature 7'
for a one-dimensional point contact in the conventional
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tunnel Hamiltonian approach [5]. For simplicity, the
right- and left-hand sides of the junction include no im-
purities. We assume that the tunneling occurs at x =
0, so that the tunnel Hamiltonian Hr can be expressed
as Hr = Zk Takdap,, + H.c. where T is the tun-
nel matrix element independent of the wave numbers
k and p. The operators aj | (apo) are the creation (an-
nihilation) operators of an electron with k (p) and spin
projection ¢ (h = 1). In §3, the current J is obtained
in the second order of the perturbation theory in Hr
at T > 0 where the phases (¢) and energy gaps (A) in
both Peierls conductors are assumed to be equal, re-
spectively.

3. Results and Discussion

The current J is expressed as

J=J1+ J2, (1)
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where o = 47e?|T|? Nr N1.. Here Ng and Ny, are the
densities of states at the Fermi levels in the right- and
left-hand sides, respectively. The function 6(x) is the
Heaviside step function. Additionally, the voltage V is
expressed as the difference between chemical potentials
pr and ur,, i.e., eV = 1, — ur where ur and pr, corre-
spond to the right- and left-hand sides of the junction,
respectively. From the result, the current J is a peri-
odic function of the phase ¢ with a period .
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Fig. 1. The dependence of the J-V characteristics on the phase
@ for p =0,7/4,and w/2 at T/Tp = 0.8 where Tp is the Peierls
transition temperature and Ag is the energy gap at 7' = 0.

The dependence of the J-V characteristics on the
phase ¢ is numerically calculated (See Fig. 1) for eV >
0 at T/Tp = 0.8 where Tp is the Peierls transition
temperature. The current J has a discontinuous jump
at eV = 2A (¢ # 0). The jump increases as the phase
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@ increases because for 0 < eV < 2A the current J
decreases as the phase ¢ increases, but while for eV >
2A the current J increases as the phase ¢ increases.

Next, we discuss the results. The first term J; is
generated by the terms Re{Gi1G4+4 — G41GY },
while the second term J> is generated by the terms
Re{G+_-Gi_ 4+ G1_G4_} where G4 and G4_ are
the diagonal and off diagonal elements of the Green’s
function, respectively [6] and the asterisk denotes the
complex conjugation. The contribution from the term
Re{G+_G4_} makes the current phase-dependent
when both phases are equal. Artemenko et al. [1] and
Munz et al. [2] have neglected the contribution by av-
eraging. For ¢ = 0, 7, Gabovich and Voitenko [7] have
also investigated the J-V characteristics, and their
results are the same as our ones.

The first term J; corresponds to the quasiparticle
current in Josephson junction, so that J; has a discon-
tinuous jump at eV = 2A. The existence of the second
term Jo makes the current J deviate from the current
J1, and the deviation makes our results different from
those in Josephson junction.

4. Conclusions

We have numerically investigated the J-V character-
istics at finite temperature for the junction consisting
of two Peierls conductors (P) separated by an insula-
tor (the one-dimensional point contact) in the second
order of the perturbation theory by using the conven-
tional tunnel Hamiltonian approach. The J-V charac-
teristics depend on the CDW phases in the mean field
approximation where the phases () and energy gaps
(A) in both Peierls conductors are assumed to be equal,
respectively. The current J is a periodic function of the
phase ¢ with a period 7, and has a discontinuous jump
at eV = 2A (¢ # 0). The jump increases as the phase
 increases. For 0 < eV < 2A the current J decreases
as the phase ¢ increases, but while for eV > 2A the
current J increases as the phase ¢ increases.
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