

# Electron-doped superconductivity in $\text{Sr}_{1-x}\text{Ca}_x\text{CuO}_{2-\delta}$ infinite layer thin films

J.C. Nie<sup>a,1</sup>, P. Badica<sup>b</sup>, M. Hirai<sup>c</sup>, Y. Kodama<sup>a</sup>, A. Crisan<sup>b</sup>, A. Sundaresan<sup>a</sup>,  
Y. Tanaka<sup>a</sup>, H. Ihara<sup>a</sup>

<sup>a</sup>NeRI, AIST, Tsukuba, 305-8568 Japan and CREST, JST, Kawaguchi, Saitama, 332-0012 Japan

<sup>b</sup>NeRI, AIST, Tsukuba, 305-8568 Japan and Nat. Inst. Mat. Phys., POB MG-7, Bucharest, Romania

<sup>c</sup>NeRI, AIST, Tsukuba, 305-8568 Japan and Sci. Univ. of Tokyo, 2641 Yamazaki, Noda, Chiba, Japan

---

## Abstract

Thin films of infinite-layer compound  $\text{Sr}_{1-x}\text{Ca}_x\text{CuO}_{2-\delta}$  have been prepared by rf magnetron sputtering. For an optimum level of oxygen vacancy superconductivities were observed ( $T_{\text{c onset}}=42$  K and 50 K,  $T_{\text{c}}(\rho=0)=11$  K and 20 K). Structural and transport data suggest that the doping mechanism is electron-type. The superconducting transitions were also confirmed by *ac* susceptibility. Further increase of doping showed to destroy superconductivity.

*Key words:* Infinite-layer; Electron-dope superconductivity; Oxygen vacancy

---

## 1. Introduction

The "infinite-layer" [1] compound  $\text{ACuO}_2$  (where A is an alkaline earth (AE) metal) can be chemically doped, by partial substitution of rare earth atoms such as La, Nd, or Gd for Sr, to become an electron-doped (n-type) superconductor in both bulk [2] and film [3] samples. Another situation is when vacancies may be incorporated on A lattice site according to the structure formula  $(\text{Sr}_{1-x}\text{AE}_x)_{1-y}\text{CuO}_{2\pm\delta}$ . In this case superconductivity with a maximum  $T_{\text{c}} > 100$  K has been observed [4,5]. The much higher  $T_{\text{c}}$  values suggest that the superconductivity results from hole doping (p-type). However, the detailed nature of the pertinent doping mechanism has not yet been conclusively identified. Even when only the Sr-vacancies are present, the high quality  $\text{Sr}_{1-x}\text{CuO}_{2-\delta}$  thin films clearly showed the tendency of electron doping [6]. The idea is that the competition between the oxygen deficiency ( $\delta$ ) and the AE deficiency may result in additional carriers as the

Cu valence changes to accommodate these vacancies. It strongly suggests that n-type superconductivity is possible in the AE stoichiometric infinite-layer system by just reducing the oxygen content.

## 2. Experimental

Desired compositional mixtures of  $\text{SrCO}_3$ ,  $\text{CaCO}_3$ , and  $\text{CuO}$  were calcined at 950°C for 20 hours, pressed into plates, and fired at 980°C for 20 hours.  $\text{Sr}_{1-x}\text{Ca}_x\text{CuO}_{2-\delta}$  thin films with infinite-layer structure were grown by single target off-axis *rf* magnetron sputtering on  $\text{SrTiO}_3$  (100), at temperatures between 450°C and 600°C.

## 3. Results and discussion

Oxygen deficiencies in  $\text{Sr}_{1-x}\text{Ca}_x\text{CuO}_{2-\delta}$  thin film could be induced either by reducing partial pressure of oxygen or by increasing substrate temperature ( $T_s$ ). In order to introduce sufficient oxygen vacancies in the

<sup>1</sup> Corresponding author. Present address: Nanoelectronics Research Institute, AIST, Tsukuba Central 2, Umezono1-1-1 Tsukuba, Ibaraki 305-8568, Japan E-mail: jc-nie@aist.go.jp

$\text{Sr}_{1-x}\text{Ca}_x\text{CuO}_{2-\delta}$  ( $x = 0.4$ ) infinite-layer phase, we reduced the partial pressure of oxygen ( $\text{O}_2/\text{Ar} = 1/3$ ) with the fixed total pressure of 2.66 Pa. In addition, after the film deposition, an *in-situ* vacuum annealing was carried out for 60 min at temperatures between 450°C and 550°C.

Figure 1 shows the variation of the lattice parameter  $c$  as a function of  $T_s$ . It shows clearly that lattice constant  $c$  decreases systematically with increase of  $T_s$ . Enhancement of the number of oxygen vacancies in the  $\text{CuO}_2$  sheets would enhance the electrostatic attraction between the intermediate AE layers, and thus the  $c$  lattice parameter should shrink [6]. At the same time, more vacancies in the  $\text{CuO}_2$  sheets means addition of electrons to Cu-O bonds that will expand  $a$  lattice parameter [5]. Indeed, the  $a$ -axis lengths observed by the in-plane lattice checking are 0.39154 nm, 0.39246 nm and 0.39340 nm for samples prepared at  $T_s = 510^\circ\text{C}$ ,  $515^\circ\text{C}$  and  $530^\circ\text{C}$ , respectively.

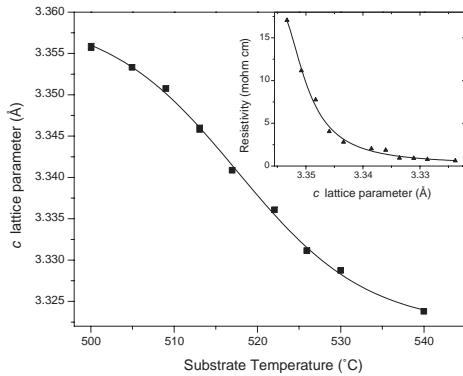



Fig. 1. Variation of the lattice parameter  $c$  as a function of  $T_s$ . Inset: the relation between the room temperature resistivity and the lattice parameter  $c$ .

The transport properties of the films were measured along the in-plane direction. For most samples prepared at lower  $T_s$ , the temperature dependence of resistivity shows semiconducting behavior. The room temperature resistivity of the films tends to decrease with decrease of  $c$  lattice parameter (inset of Fig. 1), suggesting electron doping through the increase of oxygen vacancies in  $\text{CuO}_2$  plane.

For an optimum level of oxygen vacancy, two typical superconducting transitions with  $T_{\text{c onset}} = 42$  K and 50 K and  $T_{\text{c}}(\rho=0) = 11$  K and 20 K were obtained for sample A and B (for both,  $c = 0.33409$  nm and  $a = 0.39293$  nm), respectively (Fig. 2). The transitions are somewhat broad, indicating some inhomogeneity. In addition, we have measured the temperature dependence of  $ac$  susceptibility. In the inset of Fig. 2, the diamagnetic drops at 40 - 50 K can be observed, and

there are two sharp decreases at 15 K and 22 K, respectively, for sample A and B.

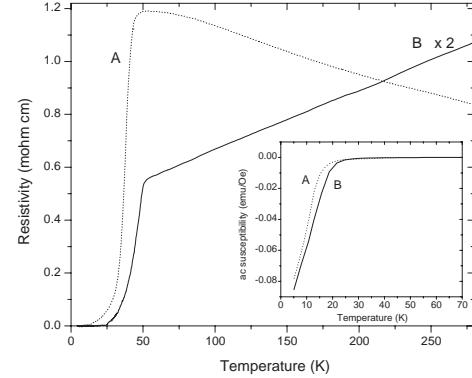



Fig. 2. Temperature dependence of resistivity for the superconducting sample A and B. The inset shows the temperature dependence of  $ac$  susceptibility, measured with  $ac$  field amplitude of 1 Oe and frequency of 997 Hz in the absence of  $dc$  field.

As the doping level is increased further, we observe metal-like conductivity over a wide temperature range, however, no sharp resistive drop is found. The disappearance of superconductivity strongly suggests that further increase of  $T_s$  will induce too many oxygen deficiencies in  $\text{CuO}_2$  planes and thus destroy superconductivity. It is possible that the structural changes could also affect the resistivity.

## Acknowledgements

The authors would like to thank N. Terada and A. Iyo for useful discussion. It is a pleasure to thank H. Kito, S. Fujiwara and H. Asada for technical help.

## References

- [1] T. Siegrist, S. M. Zahurak, D. W. Murphy and R. S. Poth, *Nature* **324** (1988) 231.
- [2] N. Ikeda, Z. Hiroi, M. Azuma, M. Takano, Y. Bando, and Y. Takeda, *Physica C* **210** (1993) 367.
- [3] S. Karimoto, K. Ueda, M. Naito, and T. Imai, *Appl. Phys. Lett.* **79** (2001) 2767.
- [4] M. Azuma, Z. Hiroi, M. Takano, Y. Bando and Y. Takeda, *Nature* **356** (1992) 775.
- [5] H. Shaked, Y. Shimakawa, B. A. Hunter, R. L. Hitterman, J. D. Jorgensen, P. D. Han and D. A. Payne, *Phys. Rev. B* **51** (1995) 11784.
- [6] R. Feenstra, X. Li, M. Kanai, T. Kawai, S. Kawai, J. D. Budai, E. C. Jones, Y. R. Sun, J. R. Thompson, S. J. Pennycook and D. K. Christen, *Physica C* **224** (1994) 300.