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Abstract

We investigate the ground-state spin and energy of disordered quantum dots using spin-density-functional theory.
With increasing interaction strength, the probability of non-minimal spin increases, but never exceeds 50%. Within
a two-orbital model, we show that the off-diagonal Coulomb matrix elements help stabilize a ground state of minimal
spin by creating a low-energy hybridization of the various minimal-spin basis states.
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1. Introduction

Recently spin in semiconductor nanostructures has
attracted much attention. The control of spin is es-
sential for a number of applications such as nanoscale
spintronics[1] and quantum bits using electron spin in
solid-state devices[2]. In disordered or chaotic quan-
tum dots[3], high-spin states are suppressed by the
rarity of degenerate or nearly degenerate levels. This
is in contrast to clean quantum dots for which high-
spin states appear for partly filled shells of degenerate
single-particle levels. We find that in disordered quan-
tum dots ground states of minimal spin are further sta-
bilized by off-diagonal Coulomb matrix elements.

2. Calculation Method

The ground-state energy and spin of disordered
two-dimensional quantum dots are obtained within
spin-density-functional theory(SDFT)[4]. We solve
the Kohn-Sham equations self-consistently[5];
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Each impurity potential has a Gaussian profile,
with strength γi distributed on [−W/2,W/2] with
W = 10h̄2/m∗, and width λ = �0/(2

√
2) where

�0 =
√

h̄/m∗ω0 � 19.5nm. The density is nimp =
1.03 × 10−3 nm−2. The resulting mean free path,
l � 120nm, is comparable to the dot diameter L =
120 − 160nm and thus the dots are marginally in the
ballistic regime and have a dimensionless conductance
g ∼ 2[7]. We use m∗ = 0.067m and h̄ω0 = 3.0meV.
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Fig. 1. Probability of a spin S ground state as a function of in-

teraction strength (e2/κ�0)/h̄ω0. Solid curves are for N = 10

(integer spin) and dashed curves are for N = 11 (half-integer

spin). (inset) Average total energy difference ∆E between

states with S = 0 and S = 1 as a function of (e2/κ�0)/h̄ω0.

The solid curve show the SDFT results. Also shown are results

of the two-orbital model: exact (low dashed curve) and dou-

bly-occupied lowest orbital (high dashed curve), with param-

eters evaluated for the 5th and 6th non-interacting orbitals.

The dimensionless interaction strength is measured by
(e2/κ�0)/h̄ω0 or rs(= 1/

√
πρ0a

∗
B) and is controlled by

changing the dielectric κ, where κ = 12.9 for GaAs[8].

3. Results

Fig.1 shows the probabilities of the different ground-
state spins S versus electron-electron interaction
strength. We see that the probability of S = 1 is al-
ways higher than that of S = 3/2, which shows that it
is much more likely to find two orbitals close in energy,
producing an S = 1 ground state than to find three
orbitals close in energy, as required for an S = 3/2
ground state. We also see that the probability of an
S = 1 ground state never exceeds 50%. High-spin
ground states are favored by the exchange energy and
the enhanced Coulomb repulsion between two elec-
trons in the same spatial orbital and are disfavored by
the single-particle energy cost of promoting an elec-
tron to a new orbital. This argument[9] is consistent
with the present SDFT results up to rs � 1, but does
not account for the observed saturation at larger rs.

To understand this saturation, we consider a two-
orbital model where two electrons occupy two non-
degenerate orbitals near the Fermi energy. There are
three degenerate S = 1 states consisting of one elec-
tron in each of the two orbitals with the energy Ẽ(S =
1) = εn + εn+1 + Ũn

n+1 − X̃n
n+1, where Ũn

n+1 is the
screened Coulomb interaction and X̃n

n+1 is the screened
exchange interaction between two electrons in orbitals
n and n+1. There are also three, non-degenerate S = 0
states. The energy Ẽ(S = 0) of the lowest S = 0 state
is obtained by diagonalizing the following 3×3 matrix;
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where the off-diagonal Coulomb matrix elements are
Ũn,n

n,n′ = e
∫

ϕ̃n,n(r)φ0
n(r)φ0

n′(r)dr. Here ϕ̃n,n(r) is the
screened potential evaluated by RPA approximation
and φ0

n(r) is the single-particle eigenstates with εn. We
find that the magnitudes of Ũn,n

n,n′ are comparable to

the screened exchange energy X̃n
n+1[10]. It is seen in

the inset of Fig.1 that the average of ∆Ẽ = Ẽ(S =
0) − Ẽ(S = 1) for the two-orbital model agrees rea-
sonably well with our SDFT results for all strengths
of interaction. In contrast, placing the two electrons in
the lowest single-particle orbital φ0

n(r) is significantly
larger than Ẽ(S = 0) at larger rs. It is evident that for
the two-orbital model the off-diagonal Coulomb matrix
elements help stabilize the S = 0 ground state.

In summary, we have studied ground-state energies
and spins in disordered quantum dots. Comparison to a
two-orbital model suggests that a ground-state of min-
imal spin is stabilized by a low-energy hybridization of
three low-lying S = 0 basis states.
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