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Abstract

We investigate the ground-state spin and energy of disordered quantum dots using spin-density-functional theory.
With increasing interaction strength, the probability of non-minimal spin increases, but never exceeds 50%. Within
a two-orbital model, we show that the off-diagonal Coulomb matrix elements help stabilize a ground state of minimal
spin by creating a low-energy hybridization of the various minimal-spin basis states.
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1. Introduction

Recently spin in semiconductor nanostructures has
attracted much attention. The control of spin is es-
sential for a number of applications such as nanoscale
spintronics[1] and quantum bits using electron spin in
solid-state devices[2]. In disordered or chaotic quan-
tum dots[3], high-spin states are suppressed by the
rarity of degenerate or nearly degenerate levels. This
is in contrast to clean quantum dots for which high-
spin states appear for partly filled shells of degenerate
single-particle levels. We find that in disordered quan-
tum dots ground states of minimal spin are further sta-
bilized by off-diagonal Coulomb matrix elements.

2. Calculation Method

The ground-state energy and spin of disordered
two-dimensional quantum dots are obtained within
spin-density-functional theory(SDFT)[4]. We solve
the Kohn-Sham equations self-consistently[5];
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where the density is p(r) = >_, |7 (r)|?, o is the spin
index, ¢(r) is the local spin polarization, and Ex.[p, (]
is the exchange-correlation energy functional[6]. The
ground-state energy E(N) is obtained from

E(N) =Y e - % / 7p|(:)_p(:;i)drdr/
o 6EXC[p7C]
_Z;/p (r)Wdr + Ei. (2)

Each impurity potential has a Gaussian profile,
with strength ~; distributed on [-W/2,W/2] with
W = 10h%/m*, and width A = {o/(2v2) where
Ly = /h/m*wo ~ 19.5nm. The density is nimp =
1.03 x 1073nm~2. The resulting mean free path,
[ ~ 120nm, is comparable to the dot diameter L =
120 — 160nm and thus the dots are marginally in the
ballistic regime and have a dimensionless conductance
g ~ 2[7]. We use m* = 0.067m and fiwp = 3.0meV.
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Fig. 1. Probability of a spin S ground state as a function of in-
teraction strength (e2?/kfg)/hwg. Solid curves are for N = 10
(integer spin) and dashed curves are for N = 11 (half-integer
spin). (inset) Average total energy difference AE between
states with S = 0 and S = 1 as a function of (e?/kfo)/hwo.
The solid curve show the SDFT results. Also shown are results
of the two-orbital model: exact (low dashed curve) and dou-
bly-occupied lowest orbital (high dashed curve), with param-
eters evaluated for the 5th and 6th non-interacting orbitals.

The dimensionless interaction strength is measured by
(e?/Kly) /huwo or rs(= 1//Tpoal) and is controlled by
changing the dielectric k, where k = 12.9 for GaAs[8].

3. Results

Fig.1 shows the probabilities of the different ground-
state spins S versus electron-electron interaction
strength. We see that the probability of S = 1 is al-
ways higher than that of S = 3/2, which shows that it
is much more likely to find two orbitals close in energy,
producing an S = 1 ground state than to find three
orbitals close in energy, as required for an S = 3/2
ground state. We also see that the probability of an
S = 1 ground state never exceeds 50%. High-spin
ground states are favored by the exchange energy and
the enhanced Coulomb repulsion between two elec-
trons in the same spatial orbital and are disfavored by
the single-particle energy cost of promoting an elec-
tron to a new orbital. This argument[9] is consistent
with the present SDFT results up to rs ~ 1, but does
not account for the observed saturation at larger rs.

To understand this saturation, we consider a two-
orbital model where two electrons occupy two non-
degenerate orbitals near the Fermi energy. There are
three degenerate S = 1 states consisting of one elec-
tron in each of the two orbitals with the energy E (S =
1) = en + €nt1 + Un+1 - Xn+17 where Un+1 is the
screened Coulomb interaction and X n+1 is the screened
exchange interaction between two electrons in orbitals
n and n+1. There are also three, non-degenerate S = 0
states. The energy E(S = 0) of the lowest S = 0 state
is obtained by diagonalizing the following 3 X 3 matrix;

H(S =0)=
2en + U:zl \/5[7:::-5-1 ~:zl-k—l
\/5[7:7’,?“ €n + €nt1 + U:;—Q—l + X:zl-;-l \/_U:Ll SH
X1 Vet 2en1 + U0

where the off-diagonal Coulomb matrix elements are
U:Z, = e [ @nn(r)oh(r)dy (r)dr. Here ¢, n(r) is the
screened potential evaluated by RPA approximation
and ¢9 (r) is the single-particle eigenstates with e,. We
find that the magnitudes of f]"’", are comparable to
the screened exchange energy Xn+1[10]- It is seen in
the inset of Fig.1 that the average of AE = E(S =
0) — E(S = 1) for the two-orbital model agrees rea-
sonably well with our SDFT results for all strengths
of interaction. In contrast, placing the two electrons in
the lowest single-particle orbital ¢9 (r) is significantly
larger than E(S = 0) at larger r,. It is evident that for
the two-orbital model the off-diagonal Coulomb matrix
elements help stabilize the S = 0 ground state.

In summary, we have studied ground-state energies
and spins in disordered quantum dots. Comparison to a
two-orbital model suggests that a ground-state of min-
imal spin is stabilized by a low-energy hybridization of
three low-lying S = 0 basis states.
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