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Abstract

We numerically investigate Bose-Einstein condensation (BEC) of finite number atoms in a mean field approximation.
For the Bose gas interacting with a weak repulsive potential and trapped in an external parabolic potential, BEC
occurs at finite temperature in one- and three-dimensional systems. Comparing free energies between the BEC
state and the normal state, we define the transition temperature. The relation between the transition temperature
and the repulsive coupling constant shows a simple power law for 1D and 3D systems.
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1. Introduction

In one- and two- dimensional uniform systems, no
Bose-Einstein Condensation (BEC) occurs at finite
temperature both in free and interacting systems.[1]
Recent experiments[2] show that BEC occurs in 1D
and 2D interacting bosons under a trapping potential.
Although a relation between critical temperature and
number of bosons is estimated in free 1D system,[3]
BEC transition temperature of interacting bosons
is not examined well. In this article, we numerically
study BEC of a dilute alkaline atomic gas under a har-
monic trapping potential and evaluate BEC transition
temperatures for 1D and 3D systems.

2. Formulation and Calculation

The BEC state is identified by the non-vanishing
thermal average of a boson field while the thermal av-
erage equals zero in a normal state. We decompose the
boson field operator Ψ into two parts, an order param-
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eter v (= 〈Ψ〉) and an operator part ψ, Ψ = v + ψ.
When v = 0, the system is in a normal state (NS) and
if v �= 0, the system is in a coherent state (CS).

In the mean field approximation, the equation of mo-
tion for Ψ = v + ψ becomes coupled equations,

ih̄
∂

∂t
v =

(
H0 − µ+ V (v∗v + 2〈ψ†ψ〉)) v (1)

ih̄
∂

∂t
ψ =

(
H0 − µ+ 2V (v∗v + 〈ψ†ψ〉)

)
ψ + V vvψ†,(2)

where µ is a chemical potential and V (> 0) is a re-
pulsive coupling constant of the atom-atom interac-
tion. We neglect a term 〈ψψ〉 in order to consistent
with phase invariant symmetry.H0 includes a trapping
harmonic potential and we use a dimensionless form,
H0 = −∇2 +r2, with the unit energy h̄ωh and the unit
length ah =

√
h̄/mωh. Here m is an atomic mass and

ωh is frequency of the harmonic potential. We also use
a temperature scale Th = h̄ωh/kB and a coupling con-
stant scale Vh = h̄2/2mah.[1]

Considering the equilibrium state, v and µ are
evaluated from the self-consistent solution of eq. (1).
Expanding ψ with annihilation and creation opera-
tors, a�e

−iE�t/h̄ and a†�e
iE�t/h̄, eq. (2) becomes the

eigenequations of the eigen energy E�. The number of
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Fig. 1. Fractions of the ordered bosons or the lowest-energy

bosons as a function of temperature.

excited bosons N1 is given by
∫

d�〈ψ†ψ〉 and the bose

distribution 〈a†�a�〉 = 1/(eE�/kBT − 1). From the given
total number N , the number of ordered bosons N0 is
defined as N0 = N −N1 which determines the normal-
ization factor of the order parameter

∫
d�v∗v = N0.

In NS (v = 0), the chemical potential µ is determined
as satisfying

∫
d�〈ψ†ψ〉 = N . We perform numeri-

cal calculations on real space meshes at intervals of
0.1ah. Boundary conditions of the system are taken as
v = ψ = 0 for |r| > 30ah.[4]

3. Results

In Fig. 1, we show the fraction of ordered bosons
in CS (solid lines) and the fraction of bosons in the
lowest energy state in NS (dashed lines) for 1D and
3D systems. We assume a spherical symmetry in the
3D system, i.e. no angular dependence in the distri-
bution of bosons. Solid lines for CS vanish above cer-
tain temperature, say T∗

c , while dashed lines for NS
exist at higher temperature. The critical temperature
T∗

c provides an upper limit of the transition tempera-
ture Tc. Since NS can exist even at lower temperature,
the transition temperatures of finite number systems
will be determined by comparing free energies between
CS and NS. We calculate the Helmholtz free energy
F = Ω + µN , here Ω is the thermodynamical poten-
tial.[4] The transition temperature Tc is defined as the
crossing point, FCS = FNS.

The transition temperatures are shown in Fig. 2
(solid circles and solid triangles) as a function of the
total number of atoms N . As V is decreased, the N -
dependence of Tc seems to vanish. There is no vari-
ation on V in the N -dependence of T∗

c (open circles
and open triangles) for both 1D and 3D systems. Note
that the estimation of the critical temperature for non-
interacting 1D atoms[3], N = (T/Th) ln(2T/Th) (long
dashed line) is in agreement with N -T∗

c relations.
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Fig. 2. The transition temperatures Tc as a function of the total

number N . The dashed lines are fitted curves (eq.(3)) for each

V . The critical temperatures T∗
c are plotted by open circles

and open triangles. The long-dashed lines are N = T ln(2T )

(1D) and T ∝ N2/3 (3D).

From the least mean square fit of the results, we
obtain a following relation among Tc, N , and V ,

Tc/Th =

(
V/Vh

Ud

)2/3

N4/3 , (3)

where Ud = 4(2π) for 1D system and Ud = ζ(3)(2π)3

for 3D system. Dashed lines in Fig. 2 show the relations
for each V .

In the mean field approximation, we point out that
the transition temperature Tc depends on the coupling
constant V while the critical temperature T∗

c is less
sensitive to the magnitude of the atom-atom interac-
tion.
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