

Multipolar ordering in half-integral spin systems

S. H. Curnoe^{a,1}, K. Ueda^b, H. Harima^c, K. Takegahara^d

^a*Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NF, A1B 3X7, Canada*

^b*Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan*

^c*Advanced Science Research Centre, Japan Atomic Energy Institute, Tokai, Ibaraki 319-1195, Japan*

^c*Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan*

^d*Department of Materials Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan*

Abstract

All possible couplings between a half-integral localised angular momentum in a cubic environment and lattice deformations are examined. When the cubic symmetry is broken the result is magnetic, quadrupolar or octupolar ordering. Application to NdFe₄P₁₂, SmRu₄P₁₂ and GdRu₄P₁₂ is discussed.

Key words: skutterudites; multipole

Several of the rare-earth filled skutterudites undergo metal-insulator (M-I) transitions, simultaneously accompanied by some kind of ordering. In PrFe₄P₁₂ anti-quadrupolar ordering has been observed directly [1], while in TbRu₄P₁₂ [2], NdFe₄P₁₂ [3], SmRu₄P₁₂ [4] and GdRu₄P₁₂ [2] magnetisation anomalies are observed at the M-I transition. An exception to this is PrRu₄P₁₂, which shows no sign of any kind of ordering at the M-I transition, but may also be anti-quadrupolar ordered at a lower temperature. The common feature of these materials is a Fermi surface instability, due to nesting of the Fermi surface at precisely one-half of the Brillouin zone (BZ). In PrFe₄P₁₂ and PrRu₄P₁₂, lattice distortions which double the unit cell and cut the BZ in half have been observed [5,6]. Band structure calculations [7] have shown that lattice distortions do in fact open a gap at the Fermi surface and group theory arguments explain both anti-quadrupolar ordering in PrFe₄P₁₂ and the absence of ordering in PrRu₄P₁₂ [8].

In this article we summarise the results of a general analysis of lattice distortion modes which can lift angular momentum degeneracy within a cubic structure. We consider half-integral total angular momentum, which

applies to the f-electron states in NdFe₄P₁₂ ($J = 9/2$), SmRu₄P₁₂ ($J = 5/2$) and GdRu₄P₁₂ ($J = 7/2$).

In general, the degeneracy in a half-integral angular momentum system is split by a cubic crystal field into states which transform according to the double representations Γ^6 , Γ^7 or Γ^8 of the group O. Since the f-electrons appear in the Hamiltonian as pairs of creation and annihilation operators in the form $f^\dagger f$, we need to consider the products $\Gamma^6 \otimes \Gamma^6 = \Gamma^7 \otimes \Gamma^7 = \Gamma^1 \oplus \Gamma^4$ and $\Gamma^8 \otimes \Gamma^8 = \Gamma^1 \oplus \Gamma^2 \oplus \Gamma^3 \oplus 2\Gamma^4 \oplus 2\Gamma^5$. The coupling between the f-electrons and a lattice distortion can be written as $C^a A_i^a [f^\dagger f]_i^a$ where C^a are coupling constants, A_i^a are the distortion modes, a indexes the representation and i indexes the basis of the representation (when the representation dimension is greater than one). The Hamiltonian can then be solved for f , yielding angular momentum eigenfunctions which are expressed in terms of A_i . Symmetry breaking terms in the Hamiltonian for A are assumed, then specific forms of the distortion are found. These are used to find the actual f-electron angular momentum ground state wavefunctions, from which the various kinds of orderings can be determined. Table I summarises the properties of the ground state wavefunctions found in this way.

The Γ^2 , Γ^3 , Γ^4 and Γ^5 deformation modes may be

¹ E-mail:curnoe@physics.mun.ca

f	A	Degeneracy	Ordering
Γ^6	Γ^1	2	none
	Γ^4	1	magnetic $-J_x - J_y + J_z$
Γ^7	Γ^1	2	none
	Γ^4	1	magnetic $-J_x - J_y + J_z$
Γ^8	Γ^1	4	none
	Γ^2	2	octupole $J_x J_y J_z$
	Γ^3	2	quadrupole $J^2 - 3J_z^2$
	Γ_1^4	2	magnetic $-J_x - J_y + J_z$
	Γ_2^4	1	magnetic $-J_x - J_y + J_z$
	Γ_1^5	2	quadrupole $J_x J_y$
	Γ_2^5	1	quadrupole $J_x J_y$

Table 1

Kinds of ordering associated with the three types of angular momentum wavefunctions in a broken cubic symmetry environment. The first column labels the three cubic representations of the angular momentum ground state wavefunction. The second column lists the representations of the lattice distortion. The third column lists the degeneracy of the broken symmetry angular momentum ground state and the fourth column gives the resulting ordering.

represented by $x^2y^4 - x^2z^4 + y^2z^4 - y^2x^4 + z^2y^4 - z^2x^4$, $(x^2 + y^2 - 2z^2, x^2 - y^2)$, $A = (yz^3 - zy^3, zx^3 - xz^3, xy^3 - yx^3)$ and $A = (yz, zx, xy)$ respectively. Symmetry breaking picks out the component $x^2 + y^2 - 2z^2$ of Γ^3 (used in Table I), and similar terms obtained by exchanging x , y and z . For Γ^4 and Γ^5 , the symmetry broken deformations are $A = (1, 1, -1)$, $(1, -1, 1)$, $(-1, 1, 1)$ or $(-1, -1, -1)$; $A = (1, 1, -1)$ is used in Table I.

According to this scenario, any of the three crystal field ground states may couple to a Γ^4 type deformation, and the resulting ground state will have a magnetic moment parallel to the direction of the distortion. The Γ^8 state can couple to any kind of deformation. Octupolar ordering is found for the Γ^2 mode, while different types of quadrupolar ordering are found for the Γ^3 and Γ^5 modes. For the Γ^2 and Γ^3 modes, and one of each of the Γ^4 and Γ^5 modes, the final ground state is doubly degenerate; the degeneracy may be lifted by a second transition. Also note that a lattice distortion which does not lead to any kind of ordering (the Γ^1 mode) is possible for each of the three crystal field ground states.

In the real systems under consideration, some entries in Table I occur more than once, while others do not occur at all. For example, there is no Γ^2 distortion mode among the twenty-four degrees of freedom of the eight transition element ions which surround the rare earth ion in all of the filled skutterudite compounds, but the Γ^5 mode occurs twice.

In a cubic crystal field the total angular momenta $J = 5/2, 7/2$ and $9/2$ (corresponding to $\text{SmRu}_4\text{P}_{12}$, $\text{GdRu}_4\text{P}_{12}$ and $\text{NdFe}_4\text{P}_{12}$) split into levels which trans-

form according to the representations $\Gamma^7 \oplus \Gamma^8$, $\Gamma^6 \oplus \Gamma^7 \oplus \Gamma^8$ and $\Gamma^6 \oplus 2\Gamma^8$ of O respectively. Which of these are the ground states is as of yet undetermined. Magnetic entropy on $\text{NdFe}_4\text{P}_{12}$ suggests that the degeneracy is lowered from four to two below the M-I transition [9], so that apparently one of the Γ^8 states is the ground state. In $\text{SmRu}_4\text{P}_{12}$ a second magnetic transition is observed just below the M-I transition; in this context it can only be explained by a Γ^8 ground state.

Lastly, we consider how the lattice distortions are related to the M-I transition. In $\text{PrFe}_4\text{P}_{12}$ and $\text{PrRu}_4\text{P}_{12}$ it is known that the M-I transition occurs with a doubling of the unit cell, which also changes the lattice structure from body-centred cubic to simple cubic. In order for this to occur, the lattice deformation must alternate in sign between neighbouring rare earth sites, and the resulting ordering is anti-ferromagnetic, anti-quadrupolar, etc. Whether or not the various modes can actually open a gap at the Fermi surface remains to be shown. Band structure calculations on $\text{PrFe}_4\text{P}_{12}$ found that a Γ^3 type distortion of iron ions opens a gap everywhere except at a few points, while a Γ^1 type distortion involving the phosphorus ions is responsible for the full M-I transition in $\text{PrRu}_4\text{P}_{12}$. In fact, because the Pr f-electrons have a Γ^3 type crystal field ground state, the Γ^1 and Γ^3 deformation modes are the only ones which are allowed by symmetry to couple to the local angular momentum in $\text{PrFe}_4\text{P}_{12}$ and $\text{PrRu}_4\text{P}_{12}$. The presence of magnetisation anomalies at the M-I transition in $\text{SmRu}_4\text{P}_{12}$, $\text{NdFe}_4\text{P}_{12}$ and $\text{GdRu}_4\text{P}_{12}$ seems to rule out Γ^1 type distortions. The Γ^3 mode is certainly a good candidate for these compounds, but at this point the other possibilities cannot be excluded.

In summary, we have found all of the various types of ordering of localised half-integral angular momenta which can occur in a distortion of the cubic environment.

References

- [1] L. Hao *et al.*, to appear in *Acta Physica Polonica B*.
- [2] C. Sekine *et al.*, *Phys. Rev. B* **62**, 11581 (2000).
- [3] G. P. Meisner, *Physica* **108B**, 763 (1981).
- [4] K. Matsuhira *et al.* to appear in *J. Phys. Soc. Jpn. Suppl.*
- [5] K. Iwasa *et al.* *Physica B* **312-313C**, 834 (2002).
- [6] C. H. Lee *et al.* *J. Phys.: Condens. Matter* **13**, L45 (2001).
- [7] H. Harima *et al.* to appear in *J. Phys. Soc. Jpn. Suppl.*; *Acta Physica Polonica B*.
- [8] S. H. Curnoe *et al.*, to appear in *J. Phys. Chem. Sol.*.
- [9] M. S. Torikachvili *et al.* *Phys. Rev. B*, **36**, 8660 (1987).