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Abstract

Dynamical melting and transverse pinning of moving vortex lattices in clean superconducting films with periodic
pinning are studied by a mean-field treatment of Langevin’s equations for the whole vortex lattice, assuming
elastic flow. Vortex displacements due thermal fluctuations and to the periodic pinning force are calculated by a
perturbation solution of the mean-field equations of motion. The dynamical melting temperature is obtained using
Lindemann’s criterion. Transverse pinning is demonstrated for motion along the periodic pinning high-symmetry
directions and the critical force is estimated.
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The study of dynamical phases and dynamical phase
transitions of moving vortices interacting with periodic
pinning has received a great deal of attention lately [1].
In recent numerical studies of clean films with periodic
pinning arrays [2,3] and of periodic Josephson Junction
Arrays [4] two dynamical phenomena are reported: dy-
namical melting of a moving vortex lattice (VL) into a
moving liquid, and transverse pinning. The dynamical
melting temperature is found to approach the equilib-
rium one in the limit of very large center of mass (CM)
velocity, and to decrease as the CM velocity decreases.
Transverse pinning occurs when the CM velocity is ori-
ented along one the high-symmetry directions of the
periodic pinning potential, and remains pinned to this
direction under a transverse driving force less than a
critical value. In this paper we propose a simple an-
alytical model for the moving VL dynamics, and use
it to estimate the dynamical melting temperature and
the transverse critical force.

We consider a two-dimensional VL at temperature
T and with Nv vortices, interacting with a periodic
pinning array and moving with CM velocity v. We as-
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sume elastic motion, so that vortex-vortex interactions
can be approximated by harmonic forces. Our model
considers a single vortex, and approximates the elastic
force exerted on it by the rest of the lattice by that of
a spring with constant κ. This is equivalent to a mean-
field treatment of Langevin’s equations for the full elas-
tic problem [5]. The equation of motion for the vortex
in the frame moving with the CM velocity is then,

η
dul

dt
= −κ(ul − ū) + Fv−p(Rl + ul + vt)

fd − ηv + Γj , (1)

where η is the friction coefficient, Rj and uj denote,
respectively, the VL positions and displacements in the
CM frame, ū = 1

Nv

∑
j
uj is the (time-independent)

displacement of the CM, Fv−p(r) is the pinning force,
fd is the driving force, and Γj is the random force ap-
propriate for temperature T . By definition, and ac-
cording to Eq. (1), the CM velocity must satisfy ηv =

fd + 1
Nv

∑Nv

j=1
Fv−p(Rl + ul + vt). Since, by assump-

tion, v is independent of time, fd must depend on
time as well as on the random force. In order to ob-
tain physical results, this equation is averaged over
time and over the random force distribution, that is
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Fig. 1. (a) Periodic pinning potential for Φ2 = Φ1/2 in units of

Φ1 (b) Average of (a) in [0,1] direction. In (a) and (b) x and y

in units of ap. c) Vortex lattice commensurate with washboard

shown in (b).

ηv = Fd+ 1
Nv

∑Nv

i=1
1
τ

∫ τ

0

〈
Fv−p

(
Rl+ul+vt

)〉
, where

Fd is interpreted as the force due to the applied cur-
rent, 〈〉 denotes average over the random force distri-
bution, and τ is a time large compared with the char-
acteristic times in Eq. (1). This equation and Eq. (1)
define our model. They can be solved by perturbation
theory, expanding Fv−p in powers of (uj − ū), which
is small for large v[6]. Here we consider only the lowest
order, which corresponds to setting uj = ū in Fv−p

j .
We assume that the pinning array is square,

with lattice parameter ap, and that the pinning
potential is Φv−p(r) = Φ1[cos (Qx) + cos (Qy)] +
Φ2[cos (Q(x + y)) + cos (Q(x − y))], where Q = 2π

ap

and x (y) is along the [1,0] ([0,1]) direction. The pin-
ning potential for Φ2 = Φ1/2 is shown in Fig. 1a). The
pinning force is given by Fv−p(r) = −∇Φv−p(r)

The moving VL structure depends on the direction
of motion. To determine it we consider the limit v →
∞, where the moving vortices feel only the pinning
potential averaged in the direction of motion, and the
dynamical phase in the CM frame reduces to the equi-
librium one [2]. The average of the above described
pinning potential along each one of [1,0], [0,1], [1,1]
and [-1,1] is a washboard, periodic in the perpendicu-
lar direction, such as the one shown in Fig. 1.(b). The
corresponding dynamical phase at low T is a VL com-
mensurate or incommensurate with the corresponding
washboard, depending on the vortex density. For other
directions of motion, the average potential is constant,
and the VL is triangular. Transverse pinning occurs
only in the commensurate VL .

First we consider dynamical melting of triangu-
lar lattices. To obtain the dynamical melting tem-
perature, Tdm(v), we use Lindemann’s criterion

as u2 = 1
Nv

∑Nv

j=1
1
τ

∫ τ

0

〈
| uj(t) |2

〉
= c2

La2
v ,

where av is the VL lattice parameter. Solving Eq.
(1) for uj(t) in the lowest order approximation

(in this case ū = 0 ) we obtain v = Fd/η and

kBTdm(v) =
κa2

vc2L
2

− κ
2

∑
Q

Q2 |UQ|2
η2(Q·v)2+κ2 . In the

v → ∞ limit Tdm → κa2
vc2L
2

, which coincides with
the equilibrium melting temperature for the VL, ob-
tained by the dislocation unbiding theory, if κc2L =
φ2

0/(16π3
√

3Λa2
v), where Λ is the film effective pen-

etration depth [7]. For finite v, Tdm decreases as v
decreases. More details of this calculation are given in
Ref.[5]

Next we discuss tranverse pinning of a commensu-
rate VL moving along [0,1]. We assume that the VL
has the structure shown in Fig. 1.(c), which is com-
mensurate with the pinning array along [1,0]. This
VL is similar to the ones found in numerical simula-
tions [2]. Transverse pinning follows from the v vs. Fd

equation, which in the lowest order approximation be-
comes, ηv = Fd + Φ1 Q sin (Qūx)x̂, where x̂ is the
unit vector along [1,0]. The solutions of this equation
are vy = Fdy/η and, since vx = 0 by assumption,
ūx = −Q−1 arcsin (Fdx/Φ1Q). For Fdx > Φ1 Q there is
no solution for ūx, which means that critical transverse
force is Fc = 2πΦ1/ap. This is just the force along x
needed to depin the commensurate VL from the wash-
board at T = 0.

In conclusion then, we introduce a simple dynamical
model that is capable of predicting dynamical melting
temperatures in qualitative agreement with numerical
simulation ones, and that allows calculation of the crit-
ical transverse pinning force. Here we consider only to
the lowest order in perturbation, but the calculations
can be extended to higher orders.
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