

Magnetic Field Dependence of the Low-temperature Specific Heat of MgCNi_3

J.-Y. Lin ^{a,1}, H. D. Yang ^b, C.-Q. Jin ^c

^a*Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan ROC*

^b*Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan ROC*

^c*Institute of Physics, Center for Condensed Matter Physics and Beijing High Pressure Research center, Chinese Academy of Sciences, P. O. Box 603, Beijing 100080, PRC*

Abstract

The specific heat of a superconductor carries crucial signature of its order parameter. The newly discovered superconductor MgCNi_3 is predicted to be unstable to ferromagnetism, and the symmetry of its order parameter symmetry is of current interest. To shed light on this issue, we have measured the low-temperature specific heat of MgCNi_3 in H . Careful analysis of the data suggests that $\gamma(H) \propto H$. Together with other physical properties, the results imply that MgCNi_3 is a moderate-coupling BCS superconductor.

Key words: MgCNi_3 ; specific heat; order parameter; The mixed state

The newly discovered superconductivity in MgCNi_3 has been a surprise [1]. MgCNi_3 can be regarded as fcc Ni with only one quarter of Ni replaced by Mg and with C sitting on the octahedral sites. With the structure so similar to that of ferromagnetic Ni, there has been theoretical speculation that MgCNi_3 is with strong ferromagnetic fluctuations [2]. To be compatible with the magnetic fluctuations, there is a possibility that MgCNi_3 has p -wave order parameter. The magnetic field dependence of $\gamma(H)$ is sensitive to the symmetry of the order parameter [3]. For a gapped superconductor, $\gamma(H)$ is expected to be proportional to H where γ is the linear coefficient of C with respect to T . For nodal superconductivity, $\gamma(H) \propto H^{1/2}$ is predicted. It is therefore of interest to study C of MgCNi_3 in detail. In this paper, the magnetic field dependence of C is analyzed.

The MgCNi_3 sample was prepared based on the procedure described in [1]. The x-ray diffraction pattern revealed the nearly single phase of MgCNi_3 structure. It is well known that T_c significantly depends on the

real carbon content in the nominal MgCNi_3 [1]. Magnetization, specific heat, and resistivity measurements all showed a superconducting onset at about 7 K in the present sample. The resistivity transition width is less than 0.5 K, while thermodynamic T_c determined from $C(T)$ is 6.4 K. $C(T)$ was measured using a ^3He thermal relaxation calorimeter from 0.6 to 10 K with magnetic fields H up to 8 T.

The results of the specific heat measurements were reported in [4] in detail. $\Delta C/\gamma_n T_c = 1.97$ is estimated from the anomaly at T_c . This indicates a moderate-coupling superconductivity within the BCS context. Fig. 1 shows C/T vs. T^2 at low T in magnetic fields. To figure out $\gamma(H)$, the data was extrapolated to $T=0$ for $H \geq 4$ T as indicated by the straight lines in Fig. 1. The low field data suffer contamination from the paramagnetic contribution of the impurities, and $\gamma(H)$ can only be obtained through the attempts of the fitting. For the approximation, consider $C(T, H) \simeq C(T, H=0) + \gamma(H)T + C_m(T, H)$, where C_m is the paramagnetic contribution and assumed to be in the Schottky form. If we take the zero-field data between 2.5 and 4.5 K as $C(T, H=0)$ (to avoid the magnetic contribution at

¹ ago@cc.nctu.edu.tw

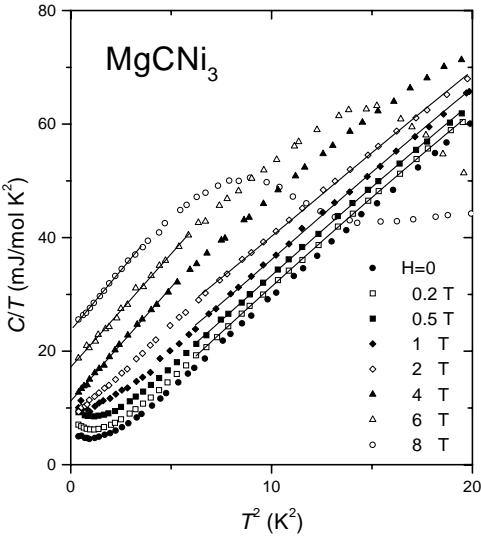


Fig. 1. $C(T, H)/T$ vs. T^2 of MgCNi_3 for $H=0$ to 8 T. The solid lines are either to extrapolate γ in high fields or to represent the fits mentioned in the text for low field data .

low temperatures), $\gamma(H)$ can be estimated by fitting $C(T, H)$ in this temperature range. The resulting $\gamma(H)$ with $H \leq 2$ T is shown in Fig. 2 together with the high field γ obtained as mentioned above.

Linearity of γ can be clearly seen in high H from Fig. 2, while a nonlinear $\gamma(H)$ at low H is likely as suggested by the fits. $\gamma(H)$ tends to revert to be linear at high H as suggested in Fig. 2. The nonlinearity in low H can be attributed to the flux line interactions [5]. The linear γ , together with the full superconducting gap and other evidences reported in [4], suggests a *s*-wave order parameter in MgCNi_3 . It is noted that other form of C_m would lead to slightly different results for low field γ and could bring γ more close to the linearity. Fitting with other forms of C_m will be reported elsewhere.

Acknowledgements

This work was supported by National Science Council, Taiwan, Republic of China under contract Nos. NSC90-2112-M-009-025 and NSC90-2112-M-110-012.

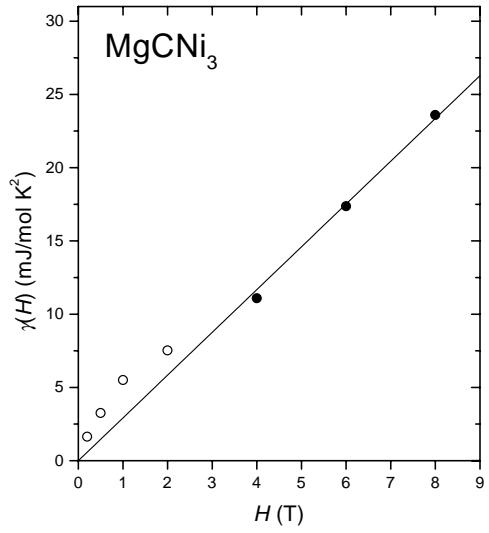


Fig. 2. $\gamma(H)$ obtained from either extrapolation (high field) or fitting (low field).

References

- [1] T. He, Q. Huang, A. P. Ramirez, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Hass, J. S. Slusky, K. Inumaru, H. W. Zandbergen, N. P. Ong, and R. J. Cava, *Nature* **411** (2001) 54.
- [2] H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, and E. Tosatti, *Phys. Rev. Lett.* **88**(2001) 027001.
- [3] For a brief, see H. D. Yang and J.-Y. Lin, *J. Phys. Chem. Solid* **62** (2001) 1861.
- [4] J.-Y. Lin, P. L. Ho, H. L. Huang, P. H. Lin, Y.-L. Zhang, R.-C. Yu, C.-Q. Jin, and H. D. Yang, *cond-mat/0202034*.
- [5] A. P. Ramirez, *Phys. Lett. A* **211** (1996) 59.