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Abstract

We calculate the zero magnetic field resistivity, taking into account the degeneracy of the 2D electron (hole) gas
and the thermal correction due to the combined Peltier and Seebeck effects. The resistivity is found to be universal
function of temperature, expressed in units of h

e2 (kF l)−1.
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1. Introduction

Recently, a great deal of interest has been focussed
on the anomalous behaviour of 2D electron(hole)
systems,[1] whose resistivity unexpectedly decreases as
the temperature is lowered, exhibiting a behaviour gen-
erally associated with metals, rather than insulators.
Although numerous theories have been put forward
to account for this effect, the origin of this metallic
behaviour is still the subject of a heated debate.

We report on a study of low-T transport in 2DEG
at zero magnetic field, taking into account both the
electron degeneracy and the Peltier-effect-induced cor-
rection to resistivity.[2,3] Usually, the ohmic measure-
ments are carried out at low current density in order
to prevent Joule heating. In contrast to the Joule heat,
the Peltier and Thomson effects are linear in current.
As shown in [2],[3], the Peltier effect influences ohmic
measurements and results in a correction to a measured
resistance. When current is flowing, one of the sam-
ple contacts is heated, and the other cooled, because
of the Peltier effect. The established temperature gra-
dient is proportional to the current. Then, the voltage
drop across the circuit includes the thermoelectromo-
tive force induced by the Peltier effect, which is linear
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in current. Finally, there exists a thermal correction
∆ρ, to the ohmic resistivity, ρ, of the sample. As was
demonstrated in [3], for degenerate electrons, ∆ρ/ρ ≈
(kT/µ)2 , where µ is the Fermi energy. Hence, the above
correction may be comparable with the ohmic resis-
tance of a sample when kT ∼ µ. We discuss the fea-
tures of thermal correction within 2D electron-density-
modulated low-temperature ohmic measurements.

2. Analytical approach

Let us consider a 2DEG sample(Fig.1, inset) and dc
current flowing in it. The 2DEG structure is arbitrary,
electrons are assumed to occupy the first quantum-
well subband with isotropic energy spectrum ε(k) =
h̄2k2

2m
. Here, m is the electron effective mass, k is the

wave vector. The sample is connected by means of two
identical leads to the current source. Both contacts are
assumed to be ohmic. The voltage is measured between
the open ends (”c” and ”d”) kept at the temperature
of the external thermal reservoir. The sample is placed
in a sample chamber with mean temperature T0. With
the temperature gradient term included, the current
density j and the energy flux density q are given by

j = σ(E−α∇T ), q = (αT − ζ/e)j− κ∇T, (1)
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Here, E = ∇ζ/e is the electric field, ζ = µ− eϕ. Then,
σ = Ne2τ/m is the conductivity, N the 2DEG den-
sity, τ the momentum relaxation time, κ the thermal
conductivity, and α the thermopower.

We recall that the electron-phonon coupling known
is weak below ∼1K. Thus, the cooling of 2DEG with
respect to bath could predominately occur through the
contacts of the sample. However, the experiments[4]

demonstrate that the electron gas is, in fact, the domi-
nant thermal resistance in this problem. The cooling is
provided by thermal conductivity of 2DEG alone and
found to follow Wiedemann-Franz law. Thus, we ne-
glect further the contact heat leak assuming adiabatic
cooling conditions. Then, we omit the Joule heating.

It is well known that the Peltier heat is generated by
current flowing across the interface between two dif-
ferent conductors. At the contact ”a” the temperature
Ta, electrochemical potential ζ, normal components of
the current I = jd, and energy flux qd are continuous.
Here, d is the sample width. Then, there exists a dif-
ference of thermopowers ∆α = αme − α, where αme is
the thermopower of the metal lead. For ∆α > 0 and
the current direction depicted in Fig.1, contact ”a” is
heated, and contact ”b” is cooled. The amount of the
Peltier heat, Qa = I∆αTa, evolved at contact ”a” and
that absorbed at contact ”b” are equal. Thus, the con-
tacts are at different temperatures( Ta,b ≈ T0) and
Ta − Tb = ∆T > 0. Since the energy flux is continu-
ous at each contact, the difference of the contact tem-
peratures is given by ∆T = I∆αT0l0/κd, where l0 is
the sample length. Following Ref. [2],[3], there exists a
thermal correction to resistivity associated with ther-
moelectromotive force εT = ∆α∆T ∼ I. Finally, the
total resistivity of the 2DEG-sample is given by

ρtot = ρ
(
1 + α2/L

)
, (2)

where α and ρ = 1/σ are 2DEG thermopower and

ohmic resistivity, L = π2k2

3e2 . Using Gibbs statistics and
isotropic energy spectrum we obtain N = N0ξF0(1/ξ),
where N0 = mµ

πh̄2 is the density of strongly degenerate
2DEG, Fn is the Fermi integral, µ = kTF is the Fermi
energy, ξ = T/TF is the dimensionless temperature.
Following Boltzman equation formalism, 2DEG ther-
mopower (for 3D case, see Pisarenko, 1940) yields α =

− k
e

[
2F1(1/ξ)
F0(1/ξ)

− 1
ξ

]
, where the momentum relaxation

time assumed to be energy-independent. In Fig.1,
we plot ρtot(T ) at different Fermi energies. Within
low-temperature ξ � 1 metallic region N = N0, thus

ρtot = ρ0(1 + π2ξ2

3 ). Here, ρ0=
h
e2 (kFl)−1 is the ohmic

resistivity at T → 0, kF is the Fermi vector, and l is
the mean free path. Then, for the high-temperature
ξ � 1 insulating region we obtain the asymptote
ρtot = ρ0

2.18
ξ ln 2+1/2

. These results are confirmed by

recent experiments[5−7] shown that for the metallic
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Fig. 1. T-dependence of the 2DEG resistivity, given

by Eq.(2) for TF = 2; 1.75; 1.5; 1.25;1; 0.75; 0.5;

0.3; 0.25; 0.2; 0.15;0.1; 0.05; 0.01K. Asymptotes: ξ � 1 -

dashed line, ξ > 1 - dotted line for TF = 0.5K. Inset: the

experimental setup(left); density dependence of the 2DEG

resistivity within the T =0.5-0.9K range(right).

region data obey a scaling law where the disordered
parameter kFl and dimensionless temperature ξ ap-
pear explicitly. Our predictions may be confirmed by
ac measurements since the thermal correction disap-
pears above some critical frequency.[2,3]
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