

Elastic Properties of the Kondo Compounds $Ce_xLa_{1-x}B_6$ ($x = 0.75$ and 0.70)

Mitsuhiro Akatsu ^{a,1}, Yuichi Nemoto ^a, Terutaka Goto ^a, Osamu Suzuki ^b,
Shintaro Nakamura ^c, Satoru Kunii ^d

^aGraduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

^bNanomaterials Laboratory, National Institute for Materials Science, Tsukuba 305-0003, Japan

^cCenter for Low Temperature Science, Tohoku University, Sendai 980-8577, Japan

^dGraduate School of Science, Tohoku University, Sendai 980-8578, Japan

Abstract

We have made thermal expansion measurements to examine the characters of an ordered phase IV in the dense Kondo compounds $Ce_xLa_{1-x}B_6$ ($x = 0.75, 0.70$). For both compounds, expansion along the [001] direction and shrinkage along [111] with decreasing temperature have been observed in phase IV. These results indicate the lattice distortion from cubic to trigonal structure. A ferro-quadrupole ordering of O_{yz} , O_{zx} , O_{xy} with Γ_5 symmetry is a probable candidate for the order parameter of the phase IV.

Key words: $Ce_xLa_{1-x}B_6$; quadrupole ordering; thermal expansion; Kondo compound

The dense Kondo compound CeB_6 and diluted compound $Ce_xLa_{1-x}B_6$ with a cubic CaB_6 -type crystal structure has a Γ_8 ground state and a Γ_7 excited state at $\Delta \simeq 540$ K. Because the Γ_8 quartet possesses spin and orbital degrees of freedom, it is expected that magnetic interactions, quadrupole interactions and the Kondo effect compete each other in CeB_6 . CeB_6 exhibits successive phase transitions of antiferro-quadrupole (AFQ) ordered phase II at $T_Q = 3.3$ K and antiferro-magnetic (AFM) phase II at $T_N = 2.3$ K. It is now established that the AFQ ordering in phase II characterized by O_{xy} -type quadrupole at $\mathbf{k} = [1/2 1/2 1/2]$ [1]. It has been pointed out that magnetic octupole moment T_{xyz} plays an important role to stabilize the AFQ phase II in magnetic fields [2].

In the case of diluted compound $Ce_{0.75}La_{0.25}B_6$, an ordered phase IV has been found between a paramagnetic phase I and AFM phase III [3,4]. Specific heat shows double sharp peaks at 1.6 K and 1.1 K corre-

sponding to the I-IV and IV-III phase transitions [3]. Magnetization measurement indicates isotropic nature in phase IV [4]. μ SR measurement does not detect the internal magnetic field due to magnetic ordering in phase IV [5]. It should be noted that a considerable softening of 30% in C_{44} has been observed in phase IV of $Ce_{0.75}La_{0.25}B_6$ [3]. In the case of $Ce_{0.70}La_{0.30}B_6$, the phase IV is stable down to $T = 20$ mK [6]. Although a possibility of octupole ordering in phase IV is discussed [7], the order parameter of phase IV has not been identified yet.

In the present study, we have measured thermal expansion in $Ce_xLa_{1-x}B_6$ for $x = 0.75$ and 0.70 by using three-terminal capacitance method. The capacitance cell is built in a handmade 3 He-cryostat with a superconducting magnet up to 14 T. Single crystals were grown by a floating zone method. Plane parallel surfaces of [001] and [111] in both compounds were prepared for the thermal expansion measurements. The present thermal expansion apparatus based on the capacitance method detects lattice distortion as high as $\Delta L/L \simeq 10^{-8}$.

¹ Corresponding author. E-mail: akatsu@phys.sc.niigata-u.ac.jp

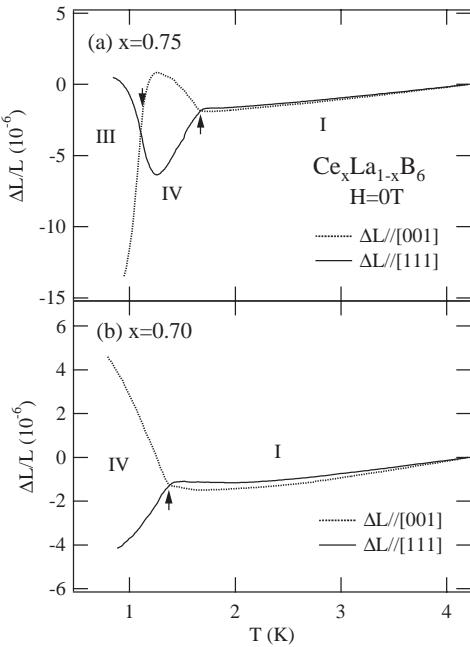


Fig. 1. The thermal expansion of $\text{Ce}_x\text{La}_{1-x}\text{B}_6$ for (a) $x = 0.75$ and (b) $x = 0.70$ along the [001] and [111] directions in zero magnetic field. The arrows are indications of phase transition points.

Figs. 1 (a) and (b) show the thermal expansion along the fourfold [001] and body diagonal [111] directions on $\text{Ce}_{0.75}\text{La}_{0.25}\text{B}_6$ and $\text{Ce}_{0.70}\text{La}_{0.30}\text{B}_6$ in zero magnetic field, respectively. In the paramagnetic phase I, the length along both directions decreases monotonously with decreasing temperature for both compounds. It is remarkable that the length along the [001] direction expands, while the length along [111] shrinks in phase IV. Around IV-III phase boundary in $\text{Ce}_{0.75}\text{La}_{0.25}\text{B}_6$, the length shrinks rapidly along [001] and expands along [111] with decreasing temperature.

The expansion of $\Delta L/L$ along the [001] direction is described by using symmetry strain as $\Delta L/L_{[001]} = \varepsilon_B/3 + \varepsilon_u/\sqrt{3}$ and along [111] by $\Delta L/L_{[111]} = \varepsilon_B/3 + 2(\varepsilon_{yz} + \varepsilon_{zx} + \varepsilon_{xy})/3$. Where $\varepsilon_B = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$ is a volume strain and $\varepsilon_u = (2\varepsilon_{zz} - \varepsilon_{xx} - \varepsilon_{yy})/\sqrt{3}$ is a tetragonal strain. The temperature dependence of $\varepsilon_{xy} (= \varepsilon_{yz} = \varepsilon_{zx})$ of $\text{Ce}_x\text{La}_{1-x}\text{B}_6$ for $x = 0.75$ and 0.70 in Fig. 2 was obtained from the results of thermal expansion experiment in Figs. 1 (a) and (b). In phase I for both compounds, the strain ε_{xy} is zero, namely the system belongs to cubic. Below I-IV phase transition temperature indicated by arrows, ε_{xy} decreases monotonously in both compounds. These results show evidently a spontaneous lattice distortion from cubic to trigonal in phase IV. The macroscopic lattice distortion with symmetry breaking in phase IV favors a ferro-

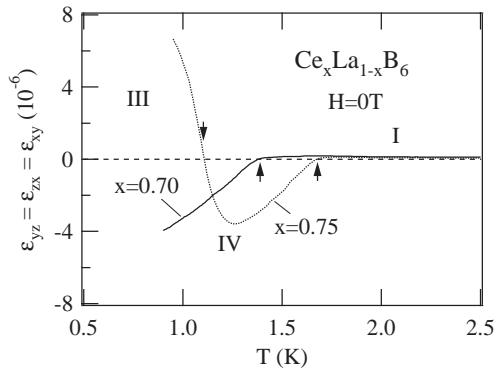


Fig. 2. The temperature dependence of $\varepsilon_{xy} (= \varepsilon_{yz} = \varepsilon_{zx})$ of $\text{Ce}_x\text{La}_{1-x}\text{B}_6$ for $x = 0.75$ and 0.70 obtained from the results of thermal expansion experiment in Figs. 1 (a) and (b).

quadrupole (FQ) ordering. Taking into account the quadrupole-strain interaction $H_{QS} = -g_{T5}(O_{yz}\varepsilon_{yz} + O_{zx}\varepsilon_{zx} + O_{xy}\varepsilon_{xy})$, the spontaneous strain $\langle \varepsilon_{xy} \rangle \neq 0$ of the trigonal distortion is expected by the FQ ordering $\langle O_{xy} \rangle \neq 0$ as $\langle \varepsilon_{xy} \rangle = N g_{T5} \langle O_{xy} \rangle / C_{44}^0$. N is the number of ion per unit volume, g_{T5} is a coupling constant of the quadrupole-strain interaction. C_{44}^0 is the elastic constant without the quadrupole-strain interaction. The magnitude of the distortion $\langle \varepsilon_{xy} \rangle \simeq 4 \times 10^{-6}$ of $\text{Ce}_x\text{La}_{1-x}\text{B}_6$ in phase IV is considerably small as compared to that of typical FQ ordering phase, which shows distortion as large as $10^{-3} \simeq 10^{-4}$. We refer typical examples of FQ ordering in HoB_6 , $\text{Ce}_3\text{Pd}_{20}\text{Ge}_6$ [8,9]. It has been proposed the possibility of antiferro-octupole ordering in phase IV. Because of the octupole does not couple to the elastic strain, the trigonal distortion in $\text{Ce}_x\text{La}_{1-x}\text{B}_6$ ($x = 0.75, 0.70$) is free from octupole ordering. The absence of precession in μSR experiment in phase IV of $\text{Ce}_{0.70}\text{La}_{0.30}\text{B}_6$ does not contradict the present scenario of FQ ordering in phase IV [5]. In order to confirm the FQ ordering in phase IV, further experiments of the thermal expansion and ultrasonic attenuation at low temperatures are required.

References

- [1] J. M. Effantin, et al., *J. Magn. Magn. Mater.* **47&48** (1985) 145.
- [2] O. Sakai, et al., *J. Phsy. Soc. Jpn.* **66** (1997) 3005.
- [3] O. Suzuki, et al., *J. Phsy. Soc. Jpn.* **67** (1998) 4243.
- [4] T. Tayama, et al., *J. Phsy. Soc. Jpn.* **66** (1997) 2268.
- [5] H. Takagiwa, et al., *J. Phsy. Soc. Jpn.* **71** (2002) 31.
- [6] Y. Nemoto, et al., *Physica B* **312&313** (2002) 191.
- [7] H. Kusunose, et al., *J. Phsy. Soc. Jpn.* **70** (2001) 1751.
- [8] A. Dönni, et al., *J. Phsy. Soc. Jpn.* **70** (2001) 448.
- [9] T. Goto, et al., *Physica B* **312&313** (2002) 492.