

Photoemission study of CeMIn_5 ($M=\text{Rh, Ir}$) : nearly localized nature of f electrons

S.-i. Fujimori ^{a,1} T. Okane ^a J. Okamoto ^a K. Mamiya ^a Y. Muramatsu ^a A. Fujimori ^{a,b},
T. Narimura ^c K. Kobayashi ^c K. Shimada ^c H. Namatame ^c M. Taniguchi ^c, H. Harima ^d,
D. Aoki ^e, S. Ikeda ^e H. Shishido ^e Y. Tokiwa ^e, Y. Haga ^f, Y. Ōnuki ^{e,f},

^aJapan Atomic Energy Research Institute, SPring-8, Hyogo 679-5148, Japan

^bGraduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

^cHiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

^dInstitute of Scientific and Industrial Research, Osaka University, Osaka 567-0043, Japan

^eGraduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

^fAdvanced Science Research Center, Japan Atomic Energy Research Institute, Ibaraki 319-1195, Japan

Abstract

We have performed $4d$ - $4f$ ($h\nu = 122$ eV) and $3d$ - $4f$ ($h\nu = 881$ eV) resonant photoemission spectroscopy studies on the heavy-fermion cerium compounds CeMIn_5 ($M=\text{Rh and Ir}$), which show competition between superconductivity and antiferromagnetism. The results suggest that the Ce $4f$ electrons in both compounds are nearly localized. We have also found that although the Ce $4f$ electrons in the superconducting CeIrIn_5 are more delocalized than those in the antiferromagnetic CeRhIn_5 , their electronic structures are very similar to each other.

Key words: photoemission spectroscopy; CeRhIn_5 ; CeIrIn_5

In recent years, relationship between magnetism and superconductivity has attracted much attention. Especially, some magnetic f -electron compounds show superconductivity under high pressure, suggesting that magnetic interactions may play essential roles in the superconductivity[1,2]. CeMIn_5 ($M=\text{Rh and Ir}$) are recently synthesized this class of Ce-based compounds. They are thought to be located near the quantum critical point (QCP) in Doniach's phase diagram, and are good target materials to study how the magnetic interactions are involved in the pairing mechanism. The CeMIn_5 compounds crystallize in the tetragonal HoCoGa_5 -type structure, which can be viewed as an alternating stack of the CeIn_3 and $M\text{In}_2$ layers. Therefore, they can be regarded as a quasi-two-

dimensional version of CeIn_3 . CeRhIn_5 is a heavy fermion (HF) antiferromagnet with $T_N=3.8$ K at ambient pressure. According to their lattice constants, the CeIn_3 layers experience a chemical pressure of ~ 14 kbar relative to bulk CeIn_3 . Hegger *et al.*[3] have discovered that CeRhIn_5 undergoes a superconducting transition at $P_C \sim 16.3$ kbar and $T_C=2$ K. This P_C is actually lower than that of CeIn_3 , supporting that CeRhIn_5 corresponds to CeIn_3 under high pressure. On the other hand, CeIrIn_5 has a small lattice constant along the c axis compared with that of CeRhIn_5 , and corresponds to CeRhIn_5 under pressure. CeIrIn_5 is a HF superconductor with $T_C=0.4$ K at ambient pressure, which is again consistent with the picture that the CeIn_3 layers in CeIrIn_5 experience a high chemical pressure compared with those in CeRhIn_5 .

In the present study, we have performed $4d$ - $4f$ ($h\nu = 122$ eV) and $3d$ - $4f$ ($h\nu = 881$ eV) resonant photoemission spectroscopy (RPES) measurements to study

¹ Corresponding author. Present address: Synchrotron Radiation Center, Japan Atomic Energy Research Institute, SPring-8, Mikazuki, Hyogo 679-5148 Japan. E-mail: fujimori@spring8.or.jp

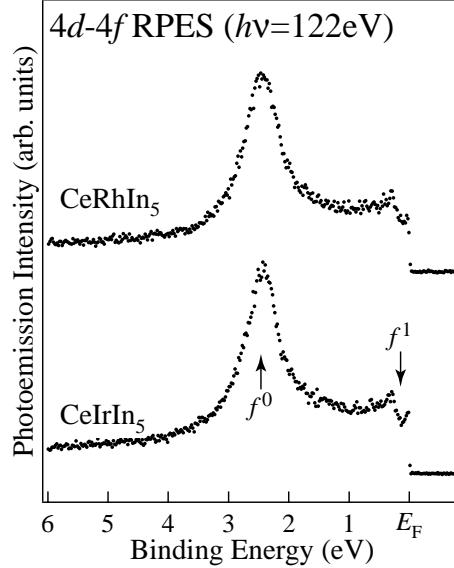


Fig. 1. 4d-4f resonant photoemission spectra of CeMIn₅.

their electronic structures.

Single crystals of CeRhIn₅ and CeIrIn₅ were grown by the self-flux method described in Ref [3]. The 3d-4f resonant photoemission experiments ($h\nu = 881.2$ eV) were performed at BL23SU of SPring-8. The sample temperature was kept at 15 K during the course of measurements, and overall energy resolution was set to about 200 meV. The 4d-4f resonant photoemission experiments ($h\nu = 122$ eV) were performed at BL1 of Hiroshima Synchrotron Radiation Center (HiSOR). The sample temperature was kept at 10 K during the course of measurements, and overall energy resolution was set to about 20 meV

Figure 1 shows 4d-4f RPES spectra ($h\nu = 122$ eV) of CeMIn₅. The spectra consist of the f^1 final-state peak located just below the Fermi level and the f^0 final-state peak at about 2.4 eV. These spectral features have been observed in other Ce-based compounds, and understood within the framework of the single impurity Anderson model (SIAM)[4]. According to SIAM, the stronger the f electrons hybridize with conduction electrons, the stronger the f^1 peak becomes. Here, the intensity of f^0 final state peak, located at about 2.4 eV, is very strong, suggesting that the Ce 4f electrons are strongly localized.

Figure 2 shows the 3d-4f RPES spectra ($h\nu = 881$ eV) of CeMIn₅. The spectra consist of the f^1 and f^0 final-state peaks, same as 4d-4f RPES spectra, but their relative intensities are different from those in 4d-4f RPES spectra. The intensity of f^1 final state peak is much stronger than those in 4d-4f RPES spectra. This is considered to be due to the surface insensitivities in the 3d-4f RPES experiments, compared with those in the 4d-4f RPES experiments[5].

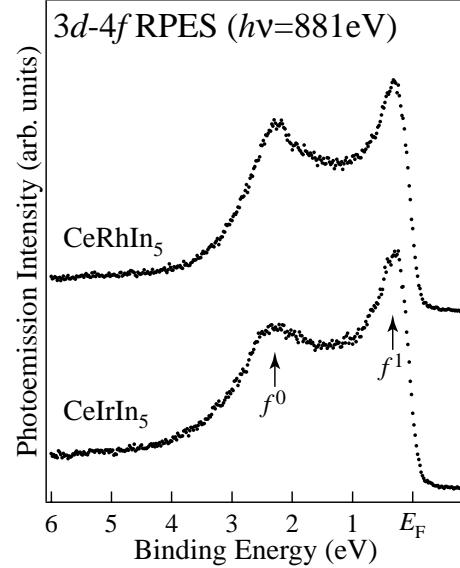


Fig. 2. 3d-4f resonant photoemission spectra of CeMIn₅.

In these spectra, the intensity of f^0 final state peak is still large even it is compared with those of the low T_K HF Ce-based compounds, such as CeRu₂Si₂ ($T_K = 22$ K)[5]. This again argues that Ce 4f electrons in these compounds are nearly localized. We also note that although both spectra are very similar, the f^1 to f^0 intensity ratio is somewhat large in CeIrIn₅ compared with that of CeRhIn₅. This indicates that the hybridization between the conduction electrons and the Ce 4f electrons in CeIrIn₅ is slightly larger than that in CeRhIn₅. This is consistent with the fact that CeIrIn₅ corresponds to CeRhIn₅ under pressure.

To summarize, we have found that Ce 4f electrons in CeMIn₅ ($M=\text{Rh, Ir}$) are nearly localized. Although the Ce 4f electrons in CeIrIn₅ are more delocalized than those in CeRhIn₅, they are more localized than low T_K compound like CeRu₂Si₂.

References

- [1] M. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Waker, D. M. Freye, R. K. W. Haselwimmer, G. G. Lozanrich, Nature (London) **394** (1998) 39.
- [2] S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lozanrich, A. Huxley, I. Sheikin, J. Flouquet, Nature (London) **406** (2000) 587.
- [3] H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarro, J. D. Thompson, Phys Rev. Lett. **84** (2000) 4986.
- [4] O. Gunnarson, K. Schönhammer, Phys. Rev. B **28** (1983) 4315.
- [5] A. Sekiyama, T. Iwasaki, K. Matsuda, Y. Saitoh, Y. Ōnuki and S. Suga, Nature (London) **403** (2000) 396.