

Continuous transformation from spin- to pseudospin-type excitation

A. Sawada^{a,1}, D. Terasawa^a, N. Kumada^a, M. Morino^a, K. Tagashira^a, Z.F. Ezawa^a,
K. Muraki^b, T. Saku^b, Y. Hirayama^b,

^a*Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578, Japan*

^b*NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi 243-0198, Japan*

Abstract

We measured the activation energy of bilayer $\nu = 1$ quantum Hall states. By changing the density difference between layers, the tilting behavior of the pseudospin(P)-type activation energy at the equal density point gradually transforms into the spin(S)-type one at the monolayer density point. At the intermediate density difference, by increasing the tilting angle the activation energy starts to decrease as the P-type excitation gap and then increases as the S-type excitation gap. It is impossible to explain this behavior by the level crossing of the P-type and S-type excitations. The result of the overall behavior indicates the excitation in a bilayer system is the simultaneous flip of spin and pseudospin.

Key words: Quantum Hall effect; bilayer system; Skyrmion; magnetotransport

In the bilayer $\nu = 1$ quantum Hall(QH) state, an anomalous energy gap behavior was observed by tilting a sample in the magnetic field, which is originated in a phase transition of the QH ground state [1]. The phase transition is explained by a competition between the pseudospin Coulomb exchange and tunneling energies, called commensurate-incommensurate(CIC) phase transition [2]. Pseudospin refers to an electron state in the layer degree of freedom. The bilayer $\nu = 1$ QH state is characterized by *the decrease of the activation energy against the increase of the tilting angle*. We call this the pseudospin(P)-type behavior.

On the other hand, the monolayer $\nu = 1$ QH state is a spin ferromagnet by the Coulomb exchange interaction, where the lowest-energy charged excitation is a spin texture called Skyrmion [3–5]. The monolayer $\nu = 1$ state is characterized by *the increase of the activation energy with the increase of the tilting angle*. We call this the spin(S)-type behavior.

Note that the bilayer $\nu = 1$ QH state is stable against the density difference from the balanced point up to

the limit of the monolayer point [6]. It is interesting how the activation energy changes from the P-type to S-type behavior by increasing the density difference [7]. Specially, we question whether a clear transition point from the P-type to the S-type behavior exists.

The sample used in the experiment is double quantum well GaAs/Al_{0.33}Ga_{0.67}As heterostructures grown by molecular beam epitaxy. The quantum wells of 20 nm GaAs are separated by a 3.1 nm Al_{0.33}Ga_{0.67}As barrier, and the tunneling energy gap Δ_{SAS} is 10.9 K. The front- and back-layer electron densities can be independently controlled by adjusting the front and back gate voltages. The low temperature mobility of the sample is $2 \times 10^6 \text{ cm}^2/\text{Vs}$ [8].

In Fig.1, we show the tilting angular dependence of the activation energy at various density differences $\sigma = (n_f - n_b)/(n_f + n_b)$, where n_f (n_b) is the electron density in the front (back) layer. The activation energy at $\sigma = 0$ shows the P-type behavior in consistency with the result due to Murphy *et al.* [1]. It decreases and then turns to constant for $\theta > \theta_c$. At the monolayer point ($\sigma = 1$), the activation energy shows the S-type behavior, indicating Skyrmion excitations

¹ Corresponding author.
E-mail: sawada-a@mail.cc.tohoku.ac.jp

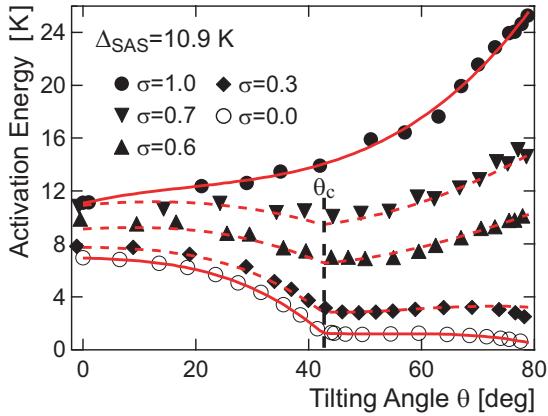


Fig. 1. The angular dependence of the activation energy. The P-type behavior at $\sigma = 0$ evolves continuously into that at $\sigma = 1$. The solid lines were obtained by the polynomial fitting of the data at $\sigma = 0$ and $\sigma = 1$. The broken lines are obtained from the formula (1).

[5]. The number of flipped spins N_s , which is obtained from the total field gradient of the activation energy, is $N_s \simeq 7$ for $\theta \leq 70^\circ$ and decrease for $\theta \geq 70^\circ$.

The CIC transition in the intermediate density difference occurs at the same critical angle $\theta_c \simeq 43^\circ$ as that of $\sigma = 0$, while the reduction of the activation energy for $\theta \leq \theta_c$ becomes smaller as σ increases. We recognize that the feature of the P-type behavior survives in the intermediate density difference. Moreover, the activation energy exhibits the S-type behavior after the CIC transition, and the tilting angles $\theta \simeq 70^\circ$ at which N_s changes are almost the same as that of $\sigma = 1$. In short, the P-type behavior evolves continuously into the S-type behavior as σ increases from 0 to 1.

As the density imbalance is made in bilayer systems, excitations with smaller energy gap between the P-type or the S-type would be naively expected to realize. On the contrary, it looks like the experimental results rather trace the larger gap, that is, the P-type excitation costing higher energy for lower θ , while the S-type excitation for higher θ . It is impossible to explain these behavior by the crossing of the two different excitation levels.

Therefore, we figure out that the excitation possesses both features of S-type and P-type with each characteristic tilting behavior at intermediate density differences. Thus we fit our experimental results by the following formula

$$\Delta(\sigma, \theta) = (1 - \sigma^2)\Delta(0, \theta) + \sigma^2\Delta(1, \theta) + b(\sigma), \quad (1)$$

where $\Delta(\sigma, \theta)$ is the tilting behavior of the activation energy at the density difference σ . We choose the ratio $1 - \sigma^2 : \sigma^2$ from a fact that the activation energy in the perpendicular magnetic field almost changes as $\propto \sigma^2$ [6]. Here $\Delta(0, \theta)$ and $\Delta(1, \theta)$ curves are obtained

from the polynomial fitting to the tilting angular dependence of the activation energies at $\sigma = 0$ and $\sigma = 1$. The bias term $b(\sigma)$ is the only fitting parameter independent on θ . The $b(\sigma)$ values are 0.43 K ($\sigma = 0.3$), 0.69 K ($\sigma = 0.6$) and 1.95 K ($\sigma = 0.7$). It is clear in Fig.1 that the tilting behavior of the activation energy is reproduced by formula (1) quite well for all σ .

We discuss possible explanations of these behavior of the activation energy. The collective lowest-energy charged excitation in the monolayer $\nu = 1$ QH state is the spin texture or Skyrmion, which possesses vortex structure of spins and a real charge $\pm e$ [3]. On the other hand, the pseudospin texture is called a meron. The lowest-energy charged excitation in the bilayer $\nu = 1$ QH state is a bound meron-antimeron pair which possesses a charge $\pm e$ [9]. These excitations in bilayer and monolayer systems are very similar to each other. The spin stiffness ρ_s increases as σ^2 because the exchange energy is proportional to the probability of the adjacent electron existence. The pseudospin stiffness ρ_p has the form $\rho_p = (1 - \sigma^2)\rho_{p0}$, where ρ_{p0} is the pseudospin stiffness at the balanced density state [10]. In conclusion, there exists a charged excitation with simultaneous spin and pseudospin flips at intermediate density differences [11].

This research was supported in part by Grants-in-Aid for Scientific Research from Ministry of Education, Science, Sports and Culture (Nos. 14340088), CREST-JST and NEDO "NTDP-98" projects.

References

- [1] S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett., **72**, 728 (1994).
- [2] Kun Yang, K. Moon, L. Zheng, A. H. MacDonald, S. M. Girvin, D. Yoshioka, and Shou-Cheng Zhang, Phys. Rev. Lett., **72**, 732 (1994).
- [3] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys. Rev. B, **47**, 16419 (1993).
- [4] S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R. Tycko, Phys. Rev. Lett., **74**, 5112 (1995).
- [5] A. Schmeller, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett., **75**, 4290 (1995).
- [6] A. Sawada, Z. F. Ezawa, H. Ohno, Y. Horikoshi, Y. Ohno, S. Kishimoto, F. Matsumoto, M. Yasumoto, and A. Urayama, Phys. Rev. Lett., **80**, 4534 (1998).
- [7] A. Iwazaki, Phys. Rev. B **65**, 153307 (2002).
- [8] K. Muraki, N. Kumada, T. Saku, and Y. Hirayama, Jpn. J. Appl. Phys., **39**, 2444 (2000).
- [9] K. Moon, H. Mori, Kun Yang, S. M. Girvin, A. H. MacDonald, L. Zheng, D. Yoshioka, and Shou-Cheng Zhang, Phys. Rev. B, **51**, 5138 (1995).
- [10] C. B. Hanna, A. H. MacDonald, and S. M. Girvin, Phys. Rev. B, **63**, 125305 (2001).
- [11] Z.F. Ezawa, Phys. Rev. Lett. **82** (1999) 3512.