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Abstract

We theoretically investigate phonon anomalies in various high Tc cuprates in terms of stripe concept. They could
be caused by coupling with charge translational modes of stripes. The phonon self-energy correction is evaluated by
taking into account the collective stripe modes. The coupling with stripes causes a phonon dispersion gap when the
phonon dispersion has a steep slope around 2�. No gap appears when the phonon spectrum has a flat dispersion
around 2�. Thus it turns out that these are depending on the slope of the phonon dispersions.
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1. Introduction

Recently, a remarkable series of neutron experiments
on various cuprates [1–7] has been done to reveal un-
equivocally the phonon dispersion anomalies: such as
a gap-like structure around the reciprocal point which
coincides with the wave number of the charge stripe
states. Therefore, the gap seems to be due to the cou-
pling with the dynamical charge stripes.

According to the neutron experiments, the phonon
spectra of a breathing mode in La2−xSrxCuO4 (LSCO)
[1–3] have a dispersion softened over the area from
(0, π

2 ) to (0, π): This origin is discussed in several pa-
pers [8–10] without considering stripes. These experi-
ments have shown that the phonon dispersion also has
a jump at the slope around (0, π

2 ).
In our previous paper [11], we showed the coupling

with the collective stripe modes cause a gap on the
phonon dispersion, by means of random phase approx-
imation (RPA), on the metallic vertical stripe state. In
this paper, we discuss the dispersion jump by varying
the stripe periodicity for insulating or metal vertical
stripe cases.

1 E-mail:eiji@mp.okayama-u.ac.jp

2. Model and formulation

We start with the Hubbard model

H =
∑

i,j,σ

ti,jc
†
i,σcj,σ + U

∑

i

ni↑ni↓, (1)

where σ is a spin index, ti,j = t (t′) for the (next) near-
est neighbor sites i and j, to describe a stable stripe
state. For t′

t
= −0.2 ( t′

t
= 0.0), we obtain a metal-

lic (insulating) state as a ground state. The mean-field
ground state [12,13] and RPA [14] yield a rich struc-
ture for individual and collective excitation spectra of
spin and charge channels. In this paper, especially, we
are interested in the dynamical charge susceptibility
χnn(q, ω) = 〈〈n;n〉〉q,ω because the charge transla-
tional mode, which appears in χnn, is directly coupled
to the phonons and most relevant to the phonon renor-
malization. We calculate 〈〈n↑;n↑〉〉 and 〈〈n↑;n↓〉〉 by
means of RPA [14], and obtain χnn(q+l1Q,q+l2Q, ω),
which is characterized by l1, l2 to represent the Umk-
lapp process resulting from periodicity of stripes.

Once the charge translational mode is yielded, we
obtain the renormalized phonon spectrum from an
Dyson-like equation [11]: The equation is formed by
matrix

Preprint submitted to LT23 Proceedings 14 June 2002



∑

m′
{δlm′ − |g|2D0(q + lQ, iωn)

χnn(q + lQ, q + m′Q, iωn)}
×D(q + m′Q, q + mQ, iωn)

= D0(q + lQ, iωn)δlm, (2)

where D0(q, iωn) = −2ωq/(ω2
n + ω2

q) represents the
unperturbed phonon Green’s function and ωq is the
unperturbed phonon dispersion.

Taking the softening into account, we assume the
dispersion for the unperturbed phonon as follows:

ωq = −A

2
(1 − sn(qx + K))sn(

qy

qx
2K + K)

+
A

2
(1 + sn(qx + K)) + B (3)

for |qx| ≥ |qy | and qx ↔ qy for |qx| < |qy |, where sn(q)
is the elliptic function and K complete elliptic integral
with modulus k.

3. Results and conclusion

We show the renormalized phonon spectral functions
− 1

π
ImD(q,q, iωn → ω + iη) in Fig. 1, where the spec-

trum for the metallic state (a) is also showed to com-
pare with those for the insulating states (b) and (c): (a)
� = (π, 3π

4
), n = 0.82, (b) � = (π, 7π

8
), n = 0.875, (c)

� = (π, 3π
4 ), n = 0.75. The spectrum for metallic state

has a gap at 2�. This gap comes from the charge col-
lective mode of stripes and the band folding of phonon
dispersion due to the periodic structure of stripes[11].

In the insulating state with t′
t

= 0.0, on the other
hand, 2� is shifted to (π

4
, 0) because the filling changes

to one hope per stripe. Around 2�, the phonon dis-
persion is flat. While a weak anomaly appears there,
it has no gap-like structure. Instead, another type of
anomaly appears around 2� although it has a weak in-
tensity. It also gives rise to the band folding of phonon
dispersion due to the periodic structure of stripes.

We can also consider the case 2� = (0, π
2 ) as in the

metallic case by decreasing n. It is shown in Fig. 1(c),
where a gap structure appears at 2� in the phonon
spectrum. Therefore, the difference between Fig. 1(a)
and Fig. 1(b) cases is not due to the system proper-
ties whether metal or insulator but on the slope of the
phonon dispersion rather. It is because the dispersion
is flat around 2� in the insulating case that no gap
appears there.

Hence we get the following conclusion: the coupling
with the collective stripe mode and the phonon mode
doesn’t necessarily cause a gap on the phonon spec-
trum, depending on the slope of the phonon dispersion
around 2�, even though another anomaly probably
appears there.
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Fig. 1. Renormalized phonon spectral functions for a metallic

state (a) and insulating states (b) and (c). We set the parame-

ters as follows: |g|2 = 0.001, A = 0.005, B = 0.04, k = 0.9999

and U
t = 4.0, t′

t = −0.2 (a) and 0.0 (b, c).
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