

Cuprate two-gap superconductivity on a vibronically renormalized spectrum formed by doping

Nikolai Kristoffel ^a, Pavel Rubin ^a, Teet Örd ^{b,1}

^a*Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia*

^b*Institute of Theoretical Physics, University of Tartu, Tähe 4, 51010 Tartu, Estonia*

Abstract

The active part of the cuprate spectrum is modelled by a “defect” band evolving by doping above the itinerant band. A two-band scheme exploiting pair-transfer and vibronic interactions of these components allows to describe qualitatively cuprate superconductivity characteristics including the pseudogap.

Key words: cuprates; two-band model; gaps; doping

The two-component scenario [1] incorporating the striped phase separation [2] of the doped CuO₂ planes seems to be the most effective in explaining the cuprate superconductivity physics. Various experimental and theoretical findings reveal that under hole doping a “defect” - midgap band is evolving near E_F above the itinerant valence band. These components can be presumably traced back to the hole-rich and hole-poor regions at stripeling. At the same time various experiments suggest the description of cuprates as two-gap superconductors [3,4]. It is natural to describe such a two-component scenario by a two-band pairing scheme [5] incorporating interband interactions. There are different approaches of this kind [6-8]. It is essential that one must use an electronic background prepared and developing by doping.

An interpolative model incorporating the valence band (b) with the weight of states (1 - c) extending in energy from -D to zero with a “defect” - midgap band (a) evolving between d and d - αc with the weight c has been supposed in [8]. Here c is the doped hole concentration to be scaled to a real case. Interband superconductivity created by transfer of intraband pairs in this model has given results [8] comparable with the cuprate properties.

The underdoped state (the chemical potential μ out of the bands overlap) pseudogap appears in this model as the minimal excitation energy of the b - band quasi-particle $\Delta_p = \sqrt{(d - \alpha c)^2 + \Delta_b^2}$. If the under - optimal doping separation line is reached at $c_0 = d/\alpha$, where the bands start to overlap, two “true” superconductivity gaps $\Delta_{a,b}$ work for $T < T_c$. The observed peculiarities in the behaviour of the gaps, as some other properties, can be explained [8].

The bands overlap leads to the change in the nature of the electron liquid, which loses its marginal behaviour. The Fermi surface becomes electron - like with hole pockets and is determined by the states of both bands.

Two band components of the model open also a channel for phonon renormalization through electron - phonon interaction between them as in the vibronic theory of ferroelectricity [9]. It can be shown, that the phonon softening effect is maximal at c_0 [10] in accordance with the experiment revealing the maximal probability of the CuO₂ - plane structural transition (LTO \rightarrow LTT) at this separation line [11].

Also the gaps, including the pseudogap as mentioned even in [12], will be renormalized by the a - b vibronic hybridization of intensity VQ_0 . Here Q_0 stands for the distortion displacement or for its fluctuation if the structural transition is not realized. The b - band pseu-

¹ Corresponding author. E-mail: teetord@ut.ee

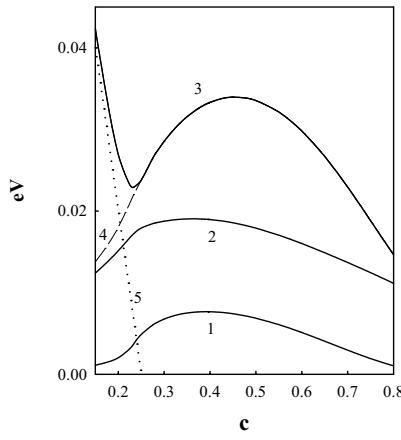


Fig. 1. Dependences on doping of 1- T_c ; 2 - $\tilde{\Delta}_a$; 3 - $\tilde{\Delta}_p$; 4 - $\tilde{\Delta}_b$ and 5 - μ .

dogap appears as $\tilde{\Delta}_p = \sqrt{(d - \alpha c)^2 + \tilde{\Delta}_b^2}$ for $\mu > 0$ and $\tilde{\Delta}_p = \tilde{\Delta}_b$ for $\mu < 0$ with $\tilde{\Delta}_b = \Delta_b^2 + V^2 Q_0^2$. The a - band connected pseudogap is $\tilde{\Delta}_a = \Delta_a^2 + V^2 Q_0^2$. The behaviour of the gaps and of T_c vs doping is illustrated in Fig. 1 ($T = 0$) with $|VQ_0| = 0.01$ eV, $Q_0(c)$ taken from [10] and other parameters from [8].

There are now two pseudogaps in the underdoped region. In the normal phase these are of different nature. After passing c_0 a common vibronic pseudogap $|VQ_0|$ arises ($T > T_c$), which will be quenched by overdoping, see Fig. 2. Experimentally one sees the normal state pseudogap in the whole doping region [3].

The intensive a - band density peak remains coupled with μ . One associates the peak in the tunneling spectra [13] with $\tilde{\Delta}_a$ and the hump with $\tilde{\Delta}_b$. Because $|\Delta_b| > |\Delta_a|$ the itinerant band contribution can remain masked at larger dopings. The b - band acts as the singlet spin component, while the a - band as a bath of uncompensated spins. The charge and spin - pseudogaps appear as the result of the common source.

A two - band superconductor possesses naturally a critical and an uncritical electronic relaxation channel [14] as observed [15]. Taking account of other aspects discussed in [8] one concludes that two - band pairing schemes on electronic background prepared by doping allowe to describe qualitatively the basic aspects of the cuprate superconductivity.

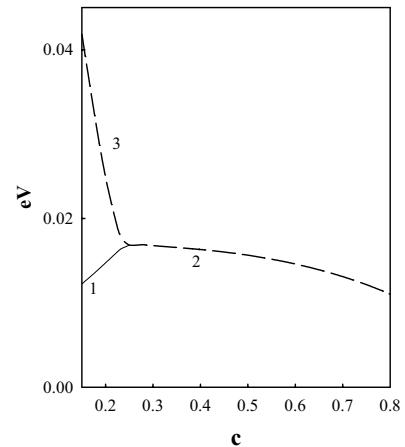


Fig. 2. Normal state pseudogaps vs doping. 1 - 2 - $|VQ_0|$; 3 - $\sqrt{(d - \alpha c)^2 + V^2 Q_0^2}$.

References

- [1] K. A. Müller, Physica C **341-348** (2000) 11.
- [2] A. Bianconi, N. Saini (Editors), *Stripes and Related Phenomena* (Kluwer Acad. Publ., N.-Y.) 2000.
- [3] M. Moraghebi et al., Phys. Rev. B **63** (2001) 214513.
- [4] A. Mourashkine, Physica C **341-348** (2000) 914.
- [5] N. Kristoffel, P. Konsin, T. Örd, Revista Nuovo Cim. **17** (1994) 1.
- [6] A. Bianconi et al., Physica C **296** (1998) 269.
- [7] D. Di Castro et al. Eur. Phys. J. B **18** (2000) 617.
- [8] N. Kristoffel, P. Rubin, Physica C **356** (2001) 171, Solid State Commun. **122** (2002) 265.
- [9] N. Kristoffel, P. Konsin, Phys. Stat. Sol. b **149** (1988) 11.
- [10] N. Kristoffel, Physica C (2002) in press
- [11] E. Kaldis et al., Phys. Rev. Lett. **79** (1997) 4899.
- [12] N. Kristoffel, Ferroelectrics Lett., **24** (1998) 33.
- [13] N. Miyakawa et al., Phys. Rev. Lett., **83** (1999) 1018.
- [14] T. Örd, N. Kristoffel, Physica C **331** (2000) 13.
- [15] V. V. Kabanov, J. Demsar, D. Mihailovic, Phys. Rev. B **61** (2000) 1477.

Acknowledgements

This work was supported by the Estonian Science Foundation Grant Nr. 4961