Cuprate two-gap superconductivity on a vibronically renormalized
spectrum formed by doping
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Abstract

The active part of the cuprate spectrum is modelled by a “defect” band evolving by doping above the itinerant
band. A two-band scheme exploiting pair-transfer and vibronic interactions of these components allows to describe
qualitatively cuprate superconductivity characteristics including the pseudogap.
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The two-component scenario [1] incorporating the
striped phase separation [2] of the doped CuO; planes
seems to be the most effective in explaining the cuprate
superconductivity physics. Various experimental and
theoretical findings reveal that under hole doping a
“defect” - midgap band is evolving near Er above the
itinerant valence band. These components can be pre-
sumably traced back to the hole-rich and hole-poor re-
gions at stripening. At the same time various experi-
ments suggest the description of cuprates as two-gap
superconductors [3,4]. It is natural to describe such a
two-component scenario by a two-band pairing scheme
[5] incorporating interband interactions. There are dif-
ferent approaches of this kind [6-8]. It is essential that
one must use an electronic background prepared and
developing by doping.

An interpolative model incorporating the valence
band (b) with the weight of states (1 — ¢) extending in
energy from -D to zero with a “defect” - midgap band
(a) evolving between d and d - ac with the weight ¢
has been supposed in [8]. Here ¢ is the doped hole con-
centration to be scaled to a real case. Interband super-
conductivity created by transfer of intraband pairs in
this model has given results [8] comparable with the
cuprate properties.
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The underdoped state (the chemical potential p out
of the bands overlap) pseudogap appears in this model
as the minimal excitation energy of the b - band quasi-
particle A, = 1/(d — ac)? + A?. If the under - optimal
doping separation line is reached at co = d/c, where
the bands start to overlap, two “true” superconduc-
tivity gaps Aq,» work for T < T.. The observed pe-
culiarities in the behaviour of the gaps, as some other
properties, can be explained [8].

The bands overlap leads to the change in the na-
ture of the electron liquid, which looses its marginal
behaviour. The Fermi surface becomes electron - like
with hole pockets and is determined by the states of
both bands.

Two band components of the model open also a
channel for phonon renormalization through electron
- phonon interaction between them as in the vibronic
theory of ferroelectricity [9]. It can be shown, that the
phonon softening effect is maximal at co [10] in ac-
cordance with the experiment revealing the maximal
probability of the CuOs - plane structural transition (
LTO — LTT ) at this separation line [11].

Also the gaps, including the pseudogap as mentioned
even in [12], will be renormalized by the a - b vibronic
hybridization of intensity V Q. Here Qo stands for
the distortion displacement or for its fluctuation if the
structural transition is not realized. The b - band pseu-
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Fig. 1. Dependences on doping of 1- Tp; 2— Ag; 3 — Ap; 4— Ay
and 5 — p.

dogap appears as A, = /(d — ac)? + AIQ) for u > 0
and Ap = Ab for p < 0 with Ab = A,Q) + VQQ(Q). The a
- band connected pseudogap is Aq = A2 +V2Q32. The
behaviour of the gaps and of 1. vs doping is illustrated
in Fig. 1 (T = 0) with |[VQo| = 0.01 eV, Qo(c) taken
from [10] and other parameters from [8].

There are now two pseudogaps in the underdoped
region. In the normal phase these are of different na-
ture. After passing cp a common vibronic pseudogap
|V Qo| arises (T' > T.), which will be quenched by over-
doping, see Fig. 2. Experimentally one sees the normal
state pseudogap in the whole doping region [3].

The intensive a - band density peak remains coupled
with u. One associates the peak in the tunneling spec-
tra [13] with A, and the hump with Ay. Because |Ay| >
|Aq| the itinerant band contribution can remain ma-
sced at larger dopings. The b - band acts as the singlet
spin component, while the a - band as a bath of un-
compensated spins. The charge and spin - pseudogaps
appear as the result of the common source.

A two - band superconductor possesses naturally a
critical and an uncritical electronic relaxation channel
[14] as observed [15]. Taking account of other aspects
discussed in [8] one concludes that two - band pairing
schemes on electronic background prepared by doping
allowe to describe qualitatively the basic aspects of the
cuprate superconductivity.
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Fig. 2. Normal state pseudogaps vs doping. 1 -2 - |[VQoq] ; 3 -
\/ (d—ac)? + V2Q32.
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