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Abstract

A stability of the bond spin-density-wave (SDW) phase observed in the one-dimensional half-filled anisotropic
extended Hubbard model is discussed in the staggered magnetic field. A renormalization group (RG) analysis using
the effective Hamiltonian implies that, due to the charge distribution in the SDW, the staggered magnetic field
is irrelevant to its spin-liquid part, so it may survive in the weak field region. To determine its stable region, we
employ a numerical procedure based upon the level-spectroscopy method and confirm our RG argument.

So far, investigations on the effects of the alternating
perturbations including the staggered magnetic field
on the one-dimensional (1D) correlated electrons have
been intensively performed. As a model for the ferro-
electricity observed in BaTiO3, the standard Hubbard
model with the alternating energy levels for cation and
oxygen sites has been employed to describe a com-
petition between electron correlations and alternating
potential effects [1,2]. The lattice dimerization effects
have been also discussed in the linear conjugated poly-
mers and the inorganic spin-Peierls material CuGeO3,
where the alternating energy for the “bond” charge has
been treated [3]. In this research, we shall discuss ef-
fects of the staggered magnetic field in the so-called
bond spin-density-wave (SDW) phase which is realized
as the one of ground states in an extended Hubbard
chain [4]. Although, generally, the staggered magnetic
field has a small energy scale and it may be relevant in
the ordinary SDW phase, we shall show its irrelevancy
in the SDW on the basis of the renormalization group
(RG) argument and further determine the stable re-
gion using a numerical method. Naturally, this can be
also viewed as a consequence of the above-mentioned
competition, and further, these alternating perturba-
tion problems share a same background. So, we expect
that our research contributes to its understandings.

Using the annihilation operator of a s-spin electron
on the jth site cj,s and the number operator nj,s, the
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model Hamiltonian treated here is

H = −
∑
j,s

t
(
c†j,scj+1,s + H.c.

)
−

∑
j

(−1)jHπSz
j

+
∑

j

(
Unj,+nj,− + V njnj+1 − JSz

j Sz
j+1

)
, (1)

where electron charge and spin (z-component) are
given by nj , 2Sz

j = nj,+±nj,− (the former refers to the
upper sign). In case of Hπ = 0, Eq. (1) expresses the
extended Hubbard model with the U(1) exchange cou-
pling, which introduces the easy plain/axis anisotropy
to the spin space depending on the sign of J , so we re-
fer to this as the anisotropic extended Hubbard model
(AEHM). In fact, the ground-state phase diagram of
this model which possesses the SDW (we define it be-
low) has been precisely obtained [4]. Thus, when nec-
essary, we shall utilize the knowledges in the following.

First, we extract an effective Hamiltonian of H using
the bosonization method, where the fields θν and φν

(ν = ρ, σ) are introduced to rewrite electron operators:
at the half-filling, it consists of three parts, i.e., H =
Hρ + Hσ + Hπ with

Hν =

∫
dx

vν

2π

[
Kν (∂xθν)2 +

1

Kν
(∂xφν )2

]

+

∫
dx

2gν

(2πα)2
cos

√
8φν , (2)

Hπ =

∫
dx − Hπ

πα
sin

√
2φρ sin

√
2φσ, (3)
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where Kν and vν are the Gaussian couplings and the
velocities of elementary excitations. Couplings gρ and
gσ stand for the Umklapp and the backward scatter-
ing, respectively; they may take the system out of the
Tomonaga-Luttinger liquid universality class. Here, it
is worthy of noticing that the staggered magnetic field
brings about a coupling term of the charge (ρ) and spin
(σ) degrees of freedoms which are separated by the
coulomb interactions. Thus, the structure in the charge
part may affect a role of Hπ in the spin-liquid part.

Second, to analyze H, we employ the perturbative
RG method [5]. For simplicity, we put excitation ve-
locities equal (v = vρ = vσ), then the corresponding
Euclidean action can be expressed as the 2D Gaussian
model perturbed by operators. Since the β-function
is determined by their scaling dimensions and Wilson
coefficients, we can straightforwardly obtain the RG
equations: For the change of the cutoff a → aedl,

dKρ(σ)

dl
= −1

2

(
y2

φ,ρ(σ) + h2
π

)
K2

ρ(σ), (4)

dyφ,ρ(σ)

dl
= −2

(
Kρ(σ) − 1

)
yφ,ρ(σ) + h2

π , (5)

dhπ

dl
= F (Kρ,Kσ, yφ,ρ, yφ,σ)hπ, (6)

where yφ,ν(0) = gν/πv, hπ(0) = −Hπa/
√

2v and F =
2 − (Kρ + Kσ − yφ,ρ − yφ,σ)/2. These equations are
basically the same as those derived in Ref. [2], but im-
portant differences are visible in the signs of some coef-
ficients, which depend on the trigonometric functions
in nonlinear terms. For repulsive interactions at Hπ =
0, Hρ is always massive unless it is located on the un-
stable Gaussian fixed line yφ,ρ = 0, y0,ρ < 0 (y0,ρ =
2Kρ − 2), and thus electronic phases with the mass-
less spin part are (i) the SDW with the renormaliza-
tion (Kρ, yφ,ρ,Kσ, yφ,σ) → (0,+∞,K∗

σ, 0) and a lock-
ing point of the phase variable 〈√8φρ〉 ∼ π, and (ii)
the SDW with (0,−∞, K′∗

σ , 0) and 〈√8φρ〉 ∼ 0.
Now, we shall deduce a role of the staggered mag-

netic field in these phases. From the β-function of Eq.
(6), hπ is relevant (irrelevant) for F > 0 (F < 0). In
the SDW phase there is almost no chance to take a
negative value of F . On the other side, its role in the
SDW phase is subtle, i.e., if the coupling of the “attrac-
tive” Umklapp scattering is renormalized to take an
enough large value (yφ,ρ → −∞), then the coefficient F
can take negative values, where Hπ becomes irrelevant.
Therefore, there is a possibility that the SDW phase
survives against the staggered magnetic field. These
predictions may become more convincing by noticing
that the staggered component of spins defined on sites,
sin

√
2φρsin

√
2φσ, is considerably reduced on the lock-

ing point of φρ in the SDW [〈sin√2φρ〉 � 0]. So, intu-
itively, Hπ may become irrelevant in the sense that it
cannot couple with electron spins in the SDW phase.

In order to check the above prediction, we numeri-
cally investigate the half-filled AEHM at J/4V = 0.5
along the 2V = U line, where the SDW and ferro-
magnetic phases are realized as the zero field ground
states [see Fig. 7(b) in Ref. [4]]. Since details of our
numerical treatment will be presented elsewhere,
here we just summarize our main consequences. The
spin-liquid part in the SDW will be destroyed by Hπ

greater than a certain critical value H∗
π, whose indi-

cation can be detected as the degeneracy condition
of the spin excitation spectrum observed in finite size
systems. Therefore, according to the so-called level-
spectroscopy method [6], we numerically treat up to
L = 18 sites systems using the Lanczos algorithm to
analyze the level structure in specified subspaces and
estimate H∗

π(L). Then by extrapolating data to L →
∞, the phase boundary is evaluated; Figure 1 exhibits
the stable region and the inset shows its magnification
(ferromagnetic phase boundary has been also given).
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Fig. 1. Stable regions of the SDW and ferromagnetic phases.

The x and y-axis are u = U/(U + 4) and h = H∗
π/(H∗

π + 2),

respectively. Dotted line is an expected one in the limit.

In conclusion, we have clarified the stable region of
the SDW in the staggered magnetic field; its presence
has been predicted in the RG argument, and for its
stability the charge distribution plays a crucial role.
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