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Abstract

Impurity scattering effect on the sound propagation in normal liquid 3He in aerogel is studied from the aspect of
the viscoelastic model. In this study the 3He-aerogel system is modeled as a composite of a viscoelastic medium
and an elastic body, the motions of which are coupled through friction between them. The dispersion relations of
longitudinal and transverse sounds are obtained by solving the coupled equations of motion.
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One of the most interesting properties of liquid 3He is
the transition from a hydrodynamic sound mode (first
sound) to a collisionless sound mode (zero sound). This
transition was first predicted by Landau on the basis of
his theory of Fermi liquid and was observed clearly in
liquid 3He. It was recently discovered that liquid 3He
in highly porous silica aerogel does not show the first-
to-zero sound transition [1,2]. The aim of this paper is
to present a theory of sound propagation in such an
impure Fermi liquid system as 3He in aerogel from the
viewpoint of the viscoelastic theory.

In the viscoelastic medium the dispersion relations
for longitudinal and transverse waves ∝ exp(iq·r−iωt)
are given as ρω2 = K l(ω)q2 and ρω2 = K t(ω)q2, re-
spectively, where ρ is the mass density of the medium
and Kl(t)(ω) is a frequency-dependent longitudinal
(transverse) elastic modulus. The transverse elastic
modulus is given in the complex form [3]

Kt(ω) = K∞/(1 + i/ωτ). (1)

The ω dependence of Kt(ω) is characterized by a relax-
ation time τ . For ωτ � 1, the limiting value of K t(ω)
is a real constant K∞. Hence, the medium in this limit
is elastic. For ωτ � 1, K t(ω) becomes pure imaginary,
i.e., K t(ω) � −iK∞ωτ ; therefore the medium behaves
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like a viscous liquid with the shear viscosity η = K∞τ .
The longitudinal elastic modulus can be written as [3,4]

K l(ω) = K0 +
4

3
Kt(ω), (2)

where K0 is a real constant. Equation (2) shows that
the longitudinal sound propagates with a velocity c1 =
(K0/ρ)1/2 in the limit ωτ → 0 and with a velocity c0 =
[(K0+

4
3K∞)/ρ]1/2 in the limitωτ → ∞, corresponding

to the first sound and the zero sound, respectively.
The relaxation time τ in pure 3He is conventionally

written as τη, which is the viscous relaxation time due
to mutual collisions between 3He quasiparticles. In the
3He-aerogel system, impurity scattering contributes to
τ as well; then τ should be modified as τ−1 = τ−1

η +τ−1
a

[1], where the contribution from aerogel-quasiparticle
collisions is denoted by τ−1

a .
Nomura et al. [1] have recently analyzed their exper-

imental data of longitudinal sound attenuation using
the viscoelastic model with the modified τ . They found
that the temperature dependence of the observed at-
tenuation cannot be reproduced by such a model. This
does not mean the breakdown of the viscoelastic the-
ory. In fact, as shall be shown below, the experimental
result can be explained well by the viscoelastic model
if we take into account the effect of friction between
liquid and aerogel in addition to the modification of τ .

The effect of the friction can easily be incorporated
into the theory by considering the collision integral in
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the Landau transport equation. When aerogel is at rest
(the effect of aerogel motion shall be taken into ac-
count later), the linearized collision integral for impu-
rity scattering can be written as [5]

Iimp = −2π
∑
k′

Wk,k′δ(εk − εk′)(δn′
k − δn′

k′ ), (3)

where εk is the equilibrium energy of a quasiparticle
with momentum k, δn′

k is the linear deviation of the
distribution function from its local equilibrium value
and 2πWk,k′ δ(εk − εk′) represents the probability of
elastic scattering from the state k to the state k′. Since
the impurity scattering does not conserve the quasipar-
ticle momentum, it gives rise to momentum transfer
between liquid and aerogel. Using eq. (3), the net mo-
mentum transfer (per unit time and per unit volume)
from liquid to aerogel can be calculated as [5]

−2

∫
d3k

(2π)3
kIimp =

1

τtr
(1 + F s

1 /3)ρu̇, (4)

where τtr is the transport mean free time, Fs
1 the p-

wave Landau parameter and u the displacement vector
of liquid (u̇ is the velocity field of liquid).

Equation (4) is proportional to the velocity u̇ and
can be regarded as friction exerted on aerogel. When
aerogel is in motion, the friction should be proportional
to the relative velocity u̇−u̇a, where ua is the displace-
ment vector of aerogel.

The friction causes coupled motion of liquid and
aerogel. Assuming aerogel to be an elastic body charac-
terized by longitudinal and transverse elastic moduli,
K l

a and Kt
a, we obtain the following coupled equations

of motion of u and ua:

ρω2ul,t = K l,t(ω)q2ul,t − iω

τ∗
tr

ρ(ul,t − ul,t
a ), (5)

ρaω2ul,t
a = K l,t

a q2ul,t
a +

iω

τ∗
tr

ρ(ul,t − ul,t
a ), (6)

where ul,t and ul,t
a denote longitudinal and transverse

parts of the displacement vectors, ρa is the mass den-
sity of aerogel and τ∗

tr = τtr/(1+F s
1 /3). It follows from

eqs. (5) and (6) that the dispersion relations for longi-
tudinal and transverse sounds can be written as

ρω2 +
iρω

τ∗
tr

ρaω2 − K l,t
a q2

ρaω2 − K l,t
a q2 + iρω/τ∗

tr

= K l,t(ω)q2. (7)

Let us compare this result with the experiment [1,2]
on longitudinal sound. The sound frequency (ω/2π ∼
15 MHz) used in the experiment [1,2] is low enough so
that the system is in the impurity-dominated hydro-
dynamic regime. This allows us to expand eq. (7) in
powers of ωτ and ωτtr. Moreover, since the observed
sound velocity is much larger than that of bare aerogel,
(K l

a/ρa)1/2 [2], we may neglect K l
aq2 in eq. (7). Thus,
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Fig. 1. Temperature dependence of the attenuation of 15 MHz

longitudinal sound in the 3He-aerogel system (solid lines) and

in pure 3He (dashed line) at a pressure of 16 bar. The parameter

values for 3He are taken from Refs. [4] and [6]. The density of

aerogel is ρa = 0.044 g/cm3 [2].

keeping only the leading order terms in ωτ and ωτtr,
we obtain the following approximate dispersion rela-
tion applicable to the actual 3He-aerogel system used
in the experiment:

ω2

q2
=

ρc2
1

ρ + ρa

[
1 − c2

0 − c2
1

c2
1

iωτ − ρ2
a

ρ(ρ + ρa)
iωτ∗

tr

]
. (8)

We see from eq. (8) that the longitudinal sound veloc-
ity is given by [ρc2

1/(ρ + ρa)]1/2. It follows that aero-
gel moves together with liquid and gives extra inertia
in liquid oscillation. The observed temperature depen-
dence of attenuation α [1,2] is well reproduced by that
calculated from eq. (8) with la = vF τa = 80 nm and
ltr = vF τtr = 45 nm (see Fig. 1).

In conclusion, the propagation of longitudinal sound
in the 3He-aerogel system has been shown to be well de-
scribed by the viscoelastic theory taking into account
simultaneous motion of aerogel. The study of trans-
verse sound shall be reported elsewhere.
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