

High-frequency dielectric anomaly with metal-insulator transition in CuIr₂S₄

Masuo Yamamoto^{a,1}, Satoru Noguchi^a, Hiroki Ishibashi^b, Takekazu Ishida^a

^aDepartment of Physics and Electronics, Osaka Prefecture University, Sakai 599-8531, Japan

^bDepartment of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan

Abstract

Electromagnetic response of CuIr₂S₄ at 34 GHz has been measured by a cavity perturbation method. Clear anomalies appear in the temperature dependences of the resonant frequency and the full width at half-maximum (FWHM) of the *Q*-curves at the metal-insulator phase transition. These anomalies of the microwave responses are very suggestive of a simultaneously charge-ordering phase transition with the metal-insulator phase transition of CuIr₂S₄.

Key words: high-frequency; MI transition; charge-ordering; CuIr₂S₄

1. Introduction

Recently a spinel-type compound CuIr₂S₄ has attracted much attention for revealing the mechanism of the metal-insulator (MI) transition at 230 K [1,2]. High temperature paramagnetic phase is metallic while low temperature diamagnetic phase is insulating. The MI transition is accompanied by a first-order structural phase transition from the cubic phase (M) to the tetragonal phase (I) [1]. Since the valence of Cu is known to be +1 from the XPS measurements [3], the mean valence of Ir is +3.5. One expects that the MI transition comes up with a charge-ordering (CO) state of Ir³⁺ and Ir⁴⁺ [1,3,4].

Radaelli *et al.* [4] reported that a crystallographic structure in insulating phase is not tetragonal but triclinic by means of high-resolution X-ray diffraction. It is also interesting to note that they observed a recovery of the crystalline symmetry at temperatures below 50 K. We plan to search evidence for a possible CO transition of CuIr₂S₄ at 230 K and a crystalline transition at 50 K.

In this paper, we report the electromagnetic response of CuIr₂S₄ revealed by a cavity perturbation method.

2. Experimental

Microwave experiments were done by a cavity perturbation method by using a vector network analyzer (ABmm, MVNA 8-350), where TE₀₁₁ mode was employed at the resonant frequency of 34 GHz in the temperature range from 4.2 K to 300 K. Temperature was controlled by a variable temperature insert (Oxford). A cylindrical cavity was made of oxygen free copper. Automatic frequency control (AFC) system was used if necessary. We can monitor the resonant frequency *F* and the transmitted power *P* continuously as a function of temperature with the aid of AFC.

Polycrystalline samples of CuIr₂S₄ were prepared by solid state reaction. The sample was placed on a quartz rod at the electric-field maximum of microwave.

The *Q*-curve was measured at the various different temperatures. Resonant frequency *F* and the full width at half-maximum (FWHM) *Γ* were analyzed from the *Q*-curve. We also performed the blank measurements where the resonant frequency is *F*₀ and FWHM is *Γ*₀. Actually, we focus on the differences ($ΔF = F - F_0$, $ΔΓ = Γ - Γ_0$) between the sample and the blank measurements.

¹ E-mail: masuo@pe.osakafu-u.ac.jp

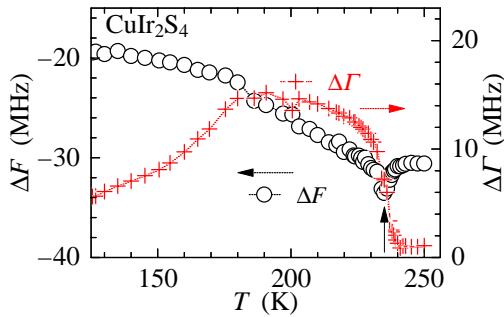


Fig. 1. ΔF and $\Delta \Gamma$ of CuIr_2S_4 as a function of increasing T (see text for notion).

3. Results and Discussion

In Fig. 1, we show ΔF and $\Delta \Gamma$ of CuIr_2S_4 as a function of increasing temperature (125 – 250 K). A remarkable feature of Fig. 1 is that ΔF increases at temperatures above 235 K. This is anomalous because the behaviour is different from what the depolarization peak predicts [5], i.e., ΔF should decrease in a metallic side with the conventional MI transition.

As ΔF is proportional to a real part of the complex dielectric constant $-\epsilon_R$ [5], the ΔF increase at temperatures above 235 K may be caused by dielectric anomaly at the MI transition. The ΔF increase is also observed for the CO phase transition of $\text{Pr}_{0.5}\text{Ca}_{0.5}\text{MnO}_{3-\delta}$ [6] where the CO phase transition is confirmed to occur simultaneously with the MI transition. We suggest that the CO transition is likely to appear with the MI transition of CuIr_2S_4 .

The broad peak in $\Delta \Gamma$ and the ΔF increase with temperature, observed below 235 K (see Fig. 1), are reasonably explained in terms of depolarization peak. Generally speaking, the appearance of depolarization peak indicates at least a change by the two order of magnitude in resistivity. Actually, this is satisfied in the resistivity measurements of CuIr_2S_4 [2]. The curves of Fig. 1 have hysteresis with temperature, as was reported for the resistivity [2] as well as the susceptibility [1]. The anomalies appeared near 220 K in decrease temperature.

In Fig. 2, we show F and P as a function of increasing temperature (30 – 80 K) with the aid of AFC. There is no anomaly in F and P near 50 K where a crystallographic structural transition was reported [4]. We note that a resonant frequency has a monotonic decrease with temperature even for an empty cavity. This comes from a thermal expansion of the cavity. The P decreases above 60 K is also due to a change in resistivity of cavity material. Since Γ is proportional to $P^{-1/2}$, the P decrease means the increase in the Γ . We

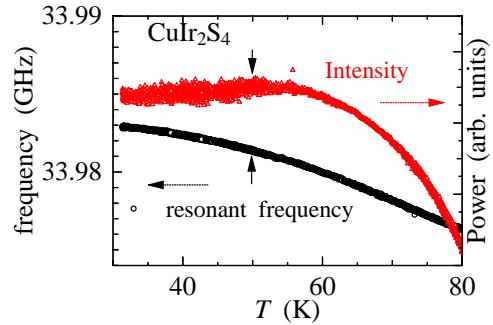


Fig. 2. Continuous monitoring of resonant frequency F and the microwave power P as a function of increasing T , using AFC.

consider that there are no anomalies on the dielectric response at temperatures below 50 K within a limit of the measurement apparatus.

We note that the irradiation of the intense X-ray may induce the crystallographic structural transition [7].

4. Conclusion

We observed the high-frequency anomaly with the metal-insulator phase transition of CuIr_2S_4 at 230 K. Although this anomaly is partly explained by the effect of the depolarization peak, we observed the dielectric anomalies of CuIr_2S_4 . There are similar to those of dielectric anomaly in the CO transition of $\text{Pr}_{0.5}\text{Ca}_{0.5}\text{MnO}_{3-\delta}$. This results suggest that the CO transition of CuIr_2S_4 occurs simultaneously with the MI transition. The frequency response did not manifest a clear anomaly at 50 K where a crystallographic structural transition was proposed.

References

- [1] T. Furubayashi, T. Matsumoto, T. Hagino, S. Nagata, J. Phys. Soc. Jpn. **63** (1994) 3333.
- [2] T. Hagino, T. Tojo, T. Atake, S. Nagata, Phil. Mag. B **71** (1995) 881.
- [3] J. Matsuno, T. Mizokawa, A. Fujimori, D. A. Zatsepin, V. R. Galakhov, E. Z. Kurmaev, Y. Kato, S. Nagata, Phys. Rev. B **55** (1997) R15979.
- [4] P. G. Radaelli, Y. Horibe, M. J. Gutmann, H. Ishibashi, C. H. Chen, R. M. Ibberson, Y. Koyama, Y. Hor, V. Kiryukhin, S. Cheong, Nature **416** (2002) 155.
- [5] O. Klein, S. Donovan, M. Dressel, G. Gruner, Int. J. Infrared and Millim. Waves, **14** (1993) 2423.
- [6] M. Yamamoto, S. Noguchi, S. Kawamata, J. Phys. Soc. Jpn. (Suppl.) **71** (2002) 148.
- [7] H. Ishibashi *et al.*, private communication.