

A massive gauge mechanism of the spin glasses

I. Kanazawa ^{a,1}

^a Department of Physics, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan

Abstract

We have introduced the microscopic theory of the spin glass, which is gauge-invariant, taking into account the mixing the spin and the chirality through mediating by the gauge fields.

Key words: spin glass; spin chirality; the gauge fields

1. Introduction

Experiments have provided convincing evidence that spin-glass (SG) magnets exhibit a phase transition at a finite temperature in the three-dimensional Heisenberg SG [1]. In apparent contrast to experiments, numerical simulations have indicated that the standard spin-glass order occurs only at zero temperature in the three-dimensional Heisenberg SG [2,3].

In order to solve this apparent puzzle, Kawamura [4] has proposed a chirality driven mechanism through the Monte Carlo simulations, and have indicated the importance of the mixing between the spin and the chirality [5]. In the present study, we will propose the microscopic theory of the spin glass, which is gauge-invariant, taking into account the mixing between the spin and the chirality through mediating by the gauge fields.

2. A model system

We will consider the effect of the gauge field fluctuation, A_μ^a , in three-dimensional Heisenberg model. Based on the important idea [6], it has been proposed that the hedgehog-like fluctuation in three-dimensional system is specified by rigid-body rotation, which is related to gauge fields of SO(4) symmetry for S^3 [7-9].

Thus it is thought that non-linear gauge fields A_μ^a introduced by the hedgehog-like fluctuations have a local SO(4) symmetry. The SO(4) quadruplet fields A_μ^a are spontaneously broken through the Higgs mechanism similar to the way in which three-dimensional Heisenberg system is broken around the hedgehog-like fluctuation (cluster). In order to discuss the gauge field fluctuation, we introduce the Lagrangian density as follows,

$$\begin{aligned} \mathcal{L} = & \frac{1}{2} (\partial_i S^j - g_1 \varepsilon_{ijk} A_i^a S^k)^2 \\ & - \frac{1}{4} (\partial_\nu A_\mu^a - \partial_\mu A_\nu^a + g_3 \varepsilon_{abc} A_\mu^b A_\nu^c)^2 \\ & + \frac{1}{2} (\partial_\mu \phi_a - g_4 \varepsilon_{abc} A_\mu^b \phi_c)^2 \\ & - \lambda^2 (\phi_a \phi_a - \mu^2)^2. \end{aligned} \quad (1)$$

After the symmetry breaking $\langle 0 | \phi_a | 0 \rangle = \langle 0, 0, 0, \mu \rangle$ or $(\langle 0 | \phi_a | 0 \rangle = \langle 0, 0, 0, -\mu \rangle)$, we can obtain the effective Lagrangian density,

$$\begin{aligned} \mathcal{L}_{\text{eff}} = & \frac{1}{2} (\partial_i S^j - g_1 \varepsilon_{ijk} A_i^a S^k)^2 \\ & - \frac{1}{4} (\partial_\nu A_\mu^a - \partial_\mu A_\nu^a + g_3 \varepsilon_{abc} A_\mu^b A_\nu^c)^2 \\ & + \frac{1}{2} (\partial_\mu \phi_a - g_4 \varepsilon_{abc} A_\mu^b \phi_c)^2 \\ & + \frac{1}{2} m_1^2 [(A_\mu^1)^2 + (A_\mu^2)^2 + (A_\mu^3)^2] \\ & + m_1 [A_\mu^1 \partial_\mu \phi_2 - A_\mu^2 \partial_\mu \phi_1] \end{aligned}$$

¹ E-mail:kanazawa@u-gakugei.ac.jp

$$\begin{aligned}
& +m_1 \left[A_\mu^2 \partial_\mu \phi_3 - A_\mu^3 \partial_\mu \phi_2 \right] \\
& +m_1 \left[A_\mu^3 \partial_\mu \phi_1 - A_\mu^1 \partial_\mu \phi_3 \right] \\
& +g_4 m_1 \left\{ \phi_4 \left(A_\mu^1 \right)^2 + \left(A_\mu^2 \right)^2 + \left(A_\mu^3 \right)^2 \right. \\
& \left. - A_\mu^4 \left[\phi_1 A_\mu^1 + \phi_2 A_\mu^2 + \phi_3 A_\mu^3 \right] \right\} - \frac{m_2^2}{2} \left(\phi_4 \right)^2 \\
& - \frac{m_2^2 g_4}{2m_1} \phi_4 \left(\phi_a \right)^2 - \frac{m_2^2 g_4^2}{8m_1^2} \left(\phi_a \phi_a \right)^2, \quad (2)
\end{aligned}$$

where S^j is the spin, $m_1 = \mu g_4$, and $m_2 = 2\sqrt{2}\lambda\mu$. The effective Lagrangian describes three massive gauge fields A_μ^1 , A_μ^2 , and A_μ^3 , and one massless gauge field A_μ^4 . Because masses of A_μ^1 , A_μ^2 , and A_μ^3 are formed through the Higgs mechanism by introducing the hedgehog-like fluctuation, the fields A_μ^1 , A_μ^2 , and A_μ^3 exist around the hedgehog-like fluctuation within the length of $\sim \frac{1}{m_1} \equiv R_C$. From the first term in eq. (2), the spin S^i is much distorted within the length of $\sim R_C$ around the hedgehog-like fluctuation. Furthermore, the spin will be distorted in the long-range interaction by the massless gauge field A_μ^4 . When $S(i)$, $S(j)$ and $S(k)$ are spins on triangle sites i , j , and k within $\sim \frac{4\pi}{3}R_C^3(\tilde{i})$ around the hedgehog-like fluctuation at the site \tilde{i} , the chiral spin parameter $q_{\tilde{i}}$ is introduced as

$$q_{\tilde{i}} \equiv \sum_{(i,j,k) \in \frac{4\pi}{3}R_C^3(\tilde{i})} S(i) \cdot (S(j) \times S(k)),$$

where (i, j, k) are local triplet sites of spins. When the hedgehog-like fluctuation is located at the position $r_{\tilde{i}}$ and $|r - r_{\tilde{i}}| \gg \frac{1}{m_1} \sim R_C$ is assumed, the massless gauge field $A_\mu^4(r, r_{\tilde{i}})$ at the position r is represented as $A_\mu^4(r, r_{\tilde{i}}) \propto \frac{q_{\tilde{i}}}{|r - r_{\tilde{i}}|}$. Thus, we can introduce the interaction between the chiral spin-disordered hedgehog-like solitons at positions $r_{\tilde{i}}$ and $r_{\tilde{j}}$ as $V_{\tilde{i}\tilde{j}} \propto \frac{(q_{\tilde{i}} \cdot q_{\tilde{j}})}{|r_{\tilde{i}} - r_{\tilde{j}}|}$. For the mean-field approximate, it is assumed that $V_{\tilde{i}\tilde{j}}$ describes N hedgehog-like soliton's interaction, which mediated by the massless A_μ^4 field, in pair (\tilde{i}, \tilde{j}) via infinite-range Gaussian-random interaction for simplifying discussions,

$$P(V_{\tilde{i}\tilde{j}}) = \frac{1}{(2\pi \langle V_{\tilde{i}\tilde{j}}^2 \rangle)^{\frac{1}{2}}} \exp \left(\frac{-V_{\tilde{i}\tilde{j}}^2}{2 \langle V_{\tilde{i}\tilde{j}}^2 \rangle} \right). \quad (3)$$

We can define the order parameter $\bar{G} \equiv \int_0^1 dx Q(x)$, where $Q(x)$ is the Parisi order parameter and is derived from $Q^{\alpha\beta} \equiv \langle q_{\tilde{i}}^\alpha q_{\tilde{i}}^\beta \rangle$ with replica indices α and β , in Parisi's theoretical formula [10]. In the temperature

region below $\frac{\langle \langle V_{\tilde{i}\tilde{j}}^2 \rangle \rangle^{\frac{1}{2}}}{k_B}$, we got the order parameter $\bar{G} \neq 0$ and $\langle q_{\tilde{i}}^\alpha \rangle = 0$, which corresponds to the chiral spin-glass phase, within the mean field approximate.

References

- [1] K. Binder and A. P. Young, Rev. Mod. Phys. **58** (1986) 801.
- [2] J. A. Olive, A. P. Young, and D. Sherrington, Phys. Rev. B **34** (1986) 6314.
- [3] F. Matsubara, T. Iyota, and S. Inawashiro, Phys. Rev. Lett. **67** (1991) 1458.
- [4] H. Kawamura, Phys. Rev. Lett. **68** (1992) 3785.
- [5] H. Kawamura, Phys. Rev. Lett. **80** (1998) 5421.
- [6] M. Kleman and T. F. Sadoc, J. Phys. **40** (1979) L567.
- [7] D. R. Nelson, Phys. Rev. Lett. **50** (1983) 982.
- [8] J. P. Sethna, Phys. Rev. Lett. **51** (1983) 2198.
- [9] S. Sachdev, D. R. Nelson, Phys. Rev. Lett. **53** (1984) 1947.
- [10] G. Parisi, Phys. Lett. A **73** (1979) 203.