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Abstract

Current-driven dynamics of vortices in Josephson junction networks under a magnetic field is studied numerically.
In the presence of structural disorder in JJNs, it is found that there are two kinds of mechanisms of plastic or elastic
depinning of vortices, and then the depinning critical current follows a scaling relation.
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Vortices in disordered Josephson junction networks
(JJNs) driven by bias currents show various dynamical
behaviors, which depend strongly on the strengths of
driving current and disorder. In this study we investi-
gate the critical current and current-driven dynamics
of JJNs in a magnetic field, using a numerical simu-
lation based on the resistively shunted junction (RSJ)
model.

The JJN consider here consists of a 2-dimensional
array of superconducting sites (islands) with an N ×N
square lattice structure, where each pair of the nearest-
neighbor sites are connected by a Josephson junction
in both the x- and y-direction, and positional disorder
is introduced into of the island configuration. In the
absence of the disorder, the lattice constants are the
same in both directions. The bias currents are injected
(taken out) in the y-direction at the top (bottom) row.
In order to analyze the time evolution of superconduct-
ing phases of the JJN, we employ the RSJ model. The
phase on the i-th site is denoted by φi. The equations
of motion of φi are given by a set of N -coupled nonlin-
ear differential equations:

N.N.∑

j

gij [φ̇i − φ̇j ] = Ii −
N.N.∑

j

Jij sin(φi − φj − Aij), (1)
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where Jij is the critical current of the junction be-

tween the i and j sites,
∑N.N.

means summation on
the nearest-neighbor sites, Aij the line integral of the
vector potential, gij = 1/Rij where Rij is the junction
resistance, the external bias current Ii = I(−I) at the
top (bottom) of the array and Ii = 0 otherwise, and
we set 2e/h̄ = 1. We calculate voltage drops across the
array in the direction of the bias current, V , which is
averaged temporally and spatially at the top (bottom)
row of arrays, and also the sum of absolute values of
vorticities due to vortices and antivortices excited in
the array, Ne, which is averaged temporally. The ef-
fects of the external magnetic field and structural dis-
order of JJNs are taken into consideration in the vec-
tor potential with the Landau gauge [1,2]. According
to Ref. [1], we introduce a random displacement field δ
into the positions of sites, by which the position of the
i-th site is given by ri = (nx + δx

i , ny + δy
i ), where the

lattice constant of the array for δx,y
i = 0 is set to be

unity, nx(ny) an integer, and δx
i (δy

i ) the deviation of
the i-th site and given by a random number in [−∆,∆].
Numerical simulations of eq.(1) are performed using
a algorism and method in [3]. The average number of
quantum flux per plaquette in the array is chosen to be
f = 5+1/9. The resistance parameter is set as Rij = 1.

Figure 1 shows V and Ne plotted against the bias
current I for a weak disorder case ((a): ∆ = 0.02) and
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a strong disorder case ((b): ∆ = 0.15). All the critical
currents of junctions are chosen to be unity (Jij =
1). The zero and finite voltage regimes correspond to
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Fig. 1. I − Ne and I − V characteristics.

pinned and moving states of vortices, respectively. The
critical current between them is denoted by Ic, which
corresponds to the depinning current of vortices. From
the comparison between figures 1(a) and (b), it is found
that there is an obvious difference in behaviors of the
I−Ne characteristics. For the weak disorder, Ne show a
rapid increase above a certain current (≈ 0.95) greater
than Ic. On the other hand, for the strong disorder, Ne

increases just above Ic. From analyses of dynamics of
vorticity [5], it is found that the increasing behaviors
of Ne is caused by nucleation (excitation) of vortex-
antivortex pairs.

These results in fig. 1 mean that the mechanisms of
depinning of vortices are different between these weak
and strong disorder cases. For the weak disorder (fig.
1(a)), the depinning of the vortex lattice is driven by
elastic deformation, and plastic deformation does not
occur dominantly. Therefore, most of the vortices in
the vortex lattice start to move at Ic and then elastic
vortex flow is formed. In this state vortex-antivortex
pairs are not excited. In the large I (≥ 0.95(> Ic))
regime, however, excitations of vortex-antivortex pairs
are caused by a dynamical effect of the strongly driven
vortex lattice in the presence of disorder of arrays. Then
the excited vortices and antivortices move in the ar-
ray, together with the moving vortex lattice. On the
other hand, for the strong disorder (fig. 1(b)), vortex-
antivortex pairs are excited at Ic prior to the depin-

ning of vortex lattices. When I ≥ Ic, excited vortices
are driven in the direction vertical to the flow of bias
currents, forming complicated flow paths (channels) in
the array. This is the plastic depinning of vortices and
antivortices due to a nuleation effect.

Next we focus on the relationship between the
strength of Ic and the pinning and flow mechanisms of
vortices. If it is assumed here that Jij has an anisotropy
that Jx and Jy in the x- and y-directions respectively,
as reported in [3], Jy/Jx works as a control parameter
that determines the strength of pinning. In fig. 2, we
plot Ic against the change in Jy/Jx for both the weak
and strong disorder cases. The following relations are
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Fig. 2. Ic-Jy/Jx characteristics.

observed here: Ic ∝ (Jy/Jx)
4
3 and ∝ (Jy/Jx)2 for the

weak (∆ = 0.02) and strong (∆ = 0.15) disorder cases,
respectively. Based on the scaling theory of pinning
of elastic manifolds in a random potential [4], these
behaviors of Ic are understood from a scaling relation

Ic ∝ (Jy/Jx)
4

4−D , where D is an effective dimension
of correlation between vortices. The difference in the
slopes in fig. 2 reflects the difference in D, i.e., the
elastic flow for weak disorder has a 2-dimensional
elastic correlation: D = 2, and the plastic flow for the
strong disorder has a 1-dimensional nature due to its
channel-like structures of flow: D = 1.

The computation in this work was done using the
facilities of the Supercomputer Center, Institute for
Solid State Physics, University of Tokyo.
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