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Abstract

We propose a theoretical approach, within the framework of the Composite Operator Method, to include the effects
of finite cluster correlations into the self-energy of strongly correlated systems. The Hubbard model is analyzed as
significant example. The self-energy is rewritten in terms of two-site composite-operator propagators, which are
computed by means of a two-site approximation preserving relevant symmetries (e.g., particle-hole symmetry).
The involved composite operators describe charge, spin and pair nearest-neighbor correlations and the excitations
related to the induced exchange coupling (J = 4t2/U). The procedure results in a very rich band structure going
well beyond the results of the two-pole approximation.
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Since the discovery of cuprate high-Tc superconduc-
tors, many new theoretical approaches have been pro-
posed to describe electronic states subject to the strong
correlations present in these materials. In general, the
difficulties come from the treatment of the compos-
ite excitations emerging in these systems. They can-
not be simply expanded in terms of the original elec-
tronic fields, especially near the Mott-Hubbard Tran-
sition. In this paper, we study the electronic states
of the Hubbard model beyond the two-pole approxi-
mation within the Composite Operator Method [1,2],
which has shown to be capable to describe the physics
of strongly correlated systems in a proper way.

The d-dimensional Hubbard Hamiltonian reads as
follows,

H =
∑
ijσ

(tij − µδij)c
†
σ(i)cσ(j) + U

∑
i

n↑(i)n↓(i), (1)

where c†σ(i) and cσ(i) are the creations and annihilation
operators of electrons with spin σ at the site i, respec-
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tively, nσ(i) = c†σ(i)cσ(i), µ is the chemical potential,
tij = −2dtαij with F [αij] = 1

2
[cos(kxa) + cos(kya)], a

is the lattice constant, F is the Fourier transform, U is
the on-site Coulomb repulsion. We define the following
basis operator,

ψσ(i) =

(
ξσ(i)

ησ(i)

)
=

(
cσ(i) (1 − n−σ(i))

cσ(i)n−σ(i)

)
, (2)

where ξσ(i) and ησ(i) describe the transitions n(i) = 0
↔ 1 and 1 ↔ 2, respectively. Its equation of motion
reads as

i
∂

∂t
ψσ(i) =

(
−µξσ(i) − dtcα

σ(i) − 2dtπσ(i)

(−µ+ U)ησ(i) − dtcα
σ(i) + 2dtπσ(i)

)
,(3)

where πσ(i) =
(

1
2
− n−σ(i)

)
cα

σ(i)+c†−σ(i)cσ(i)cα
−σ(i)+

cσ(i)cα†
−σ(i)c−σ(i) with cα

σ(i) =
∑

j
αijcσ(j).

We can rewrite the equation of motion (3) by isolat-
ing the term which is linear in the basis as

i
∂

∂t
ψ = Eψ + δj, (4)
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where E(k) = m(k)I−1(k) with I(k) = F〈{ψ,ψ†}〉
and m(k) = F〈{i ∂

∂t
ψ,ψ†}〉. In the paramagnetic and

translational invariant state, I(k) is diagonal and uni-
form: I11 = 1 − 〈n〉/2 and I22 = 〈n〉/2. m(k) is sym-
metric and has the following entries

m11(k) = −µI11 − 2dt [∆ + α(k) (1 − 〈n〉 + p)]

m12(k) =m21(k) = 2dt [∆ − α(k) (I22 − p)] (5)

m22(k) = [−µ+ U ] I22 − 2dt [∆ + α(k)p] ,

with

∆ = 〈ξα
↑ (i)ξ†↑(i)〉 − 〈ηα

↑ (i)η†↑(i)〉 (6)

p=
1

4
〈nν(i)nα

ν (i)〉 − 〈(c↑(i)c↓(i))αc†↓(i)c
†
↑(i)〉, (7)

where nν (i) is the charge (ν = 0) and spin (ν = 1, 2, 3)
density operator. δj is the residual term as it is orthog-
onal, in the sense of the averaged anticommutators,
to the basic field ψ; it contains the two-site compos-
ite excitations. The thermal retarded Green’s function
G(k, ω) = F〈R[ψ(i),ψ†(j)]〉 has the structure,

G(k, ω) =
1

ω − E(k) − Σ(k, ω)
I. (8)

where the self-energy Σ(k, ω) reads as,

Σ(k, ω) =
1

I +A(k, ω)
B(k, ω)I−1, (9)

withA(k, ω) = F〈R[δj,ψ†]〉 andB(k, ω) = F〈R[δj, δj†]〉.
By neglecting δj (i.e., by setting Σ(k, ω) = 0) we ob-
tain a generalized mean field approximation in terms
of the Hubbard operators, which shows a two-band
structure [2]. To improve the solution beyond the two-
pole approximation, we need to take into account the
self-energy contribution.

In order to do this, we introduce a 6-component basis
ϕ which reads as: ϕ1(i) = ξ(i), ϕ2(i) = η(i) and

ϕ3(i) = ξsσ(i) =
∑

j

αij ξ̄sσ(ij) (10)

ϕ4(i) = ηsσ(i) = πσ(i) − ξsσ(i) =
∑

j

αij η̄sσ(ij) (11)

ϕ5(i) = ξ̃sσ(i) =
∑

j

αij ξ̄sσ(ji) (12)

ϕ6(i) = η̃sσ(i) =
∑

j

αij η̄sσ(ji) (13)

with

ξ̄sσ(ij) = (1/2 − n−σ(i))ξσ(j) + c†−σ(i)cσ(i)ξ−σ(j)

− η†−σ(j)cσ(i)c−σ(i) (14)

η̄sσ(ij) = (1/2 − n−σ(i))ησ(j) + c†−σ(i)cσ(i)η−σ(j)

− ξ†−σ(j)cσ(i)c−σ(i). (15)

ϕ1 to ϕ4 will permit us to exactly rewrite

δj(i) =

(
∆j(i)

−∆j(i)

)
(16)

∆j(i) =

4∑
n=1

∑
j

λn(i, j)ϕn(j) (17)

where λ(k) = F [λ(i, j)] has the following expression

λ1(k) = 2dt [∆ + α(k)(p+ I11/2 − I22)] /I11 (18)

λ2(k) = −2dt [∆ + α(k)(p− I22/2)] /I22 (19)

λ3(k) = λ4(k) = −2dt (20)

Accordingly, A(k, ω) and B(k, ω) can be exactly
rewritten in terms of S(k, ω) = F〈R[ϕ(i),ϕ†(j)]〉.

Then, we linearize the equation of motion of ϕ
by means of a two-site approximation reducing any
higher-order field to its two-site component and explic-
itly preserving the particle-hole symmetry. This latter
requirement forced the introduction of ϕ5 and ϕ6 [3]. It
is worth mentioning that the four fields ξ, η, ξs and ηs

are a complete fermionic set of eigenoperators for the
two-site Hubbard model [4] and exactly describe its
two relevant scales of energy U and J = 4t2/U . Then,
with the approximate expression of the propagator
S(k, ω) we can finally compute the self-energy Σ(k, ω)
and the thermal retarded Green’s function G(k, ω).

We are left with the problem of fixing the parame-
ters ∆, p and µ. ∆ can be computed, through its def-
inition, directly from the Green’s function. p and µ
will be computed self-consistently from the constraint
〈ξ†(i)η(i)〉 = 0 required by the Pauli principle and the
equation defining the electron number density 〈n〉 as a
function of the Green’s function elements.

The presented procedure will give us a solution with
a very rich band structure which is well beyond the one
obtained by the two-pole approximation. The details
of the formula and the computational implementation
will be presented elsewhere.
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