Effects of two-site correlations in the Hubbard model
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Abstract

We propose a theoretical approach, within the framework of the Composite Operator Method, to include the effects
of finite cluster correlations into the self-energy of strongly correlated systems. The Hubbard model is analyzed as
significant example. The self-energy is rewritten in terms of two-site composite-operator propagators, which are
computed by means of a two-site approximation preserving relevant symmetries (e.g., particle-hole symmetry).
The involved composite operators describe charge, spin and pair nearest-neighbor correlations and the excitations
related to the induced exchange coupling (J = 4£/U). The procedure results in a very rich band structure going
well beyond the results of the two-pole approximation.
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Since the discovery of cuprate high-7: superconduc-
tors, many new theoretical approaches have been pro-
posed to describe electronic states subject to the strong
correlations present in these materials. In general, the
difficulties come from the treatment of the compos-
ite excitations emerging in these systems. They can-
not be simply expanded in terms of the original elec-
tronic fields, especially near the Mott-Hubbard Tran-
sition. In this paper, we study the electronic states
of the Hubbard model beyond the two-pole approxi-
mation within the Composite Operator Method [1,2],
which has shown to be capable to describe the physics
of strongly correlated systems in a proper way.

The d-dimensional Hubbard Hamiltonian reads as
follows,

H =" (tiy = pdi)eb(D)ea(j) + U Y mi(ini (i), (1)

where ¢} (i) and ¢, () are the creations and annihilation
operators of electrons with spin o at the site i, respec-
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tively, n, (i) = ¢l (i)co (i), p is the chemical potential,
tij = —thai]’ with .7:[(11']'] = % [cos(kxa) + cos(kya)}, a
is the lattice constant, F is the Fourier transform, U is
the on-site Coulomb repulsion. We define the following
basis operator,

wiy = [FO) 2 (@@
1) )\ eolin-a(d)

where &, (7) and 7, (7) describe the transitions n(i) = 0
<~ 1 and 1 < 2, respectively. Its equation of motion
reads as

.0 o K& (1) — dtcg (i) — 2dtms (i)
15%(1) = ) o). )
(—p+ U)o (i) — dtcy (i) + 2dtme (i)

where 7, (i) = (% — n_a(i)) (i) el (i)eo (i) o (1) +
o (i)t (i) o (i) with ¢S (i) = Z]. aijco (7).

We can rewrite the equation of motion (3) by isolat-
ing the term which is linear in the basis as

iD= By 45, )
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where E(k) = m(k)I~*(k) with I(k) = F{{y,¢'})
and m(k) = }'({i%a/) ¥7}). In the paramagnetic and
translational invariant state, I(k) is diagonal and uni-
form: I11 = 1 — (n)/2 and Iz = (n)/2. m(k) is sym-
metric and has the following entries

ma1(k) = —pulin — 2dt [A + a(k) (1 — (n) + p)]

mia(k) = mai (k) = 2dt [A — a(k) (I22 — p)] (5)

maz(k) = [—p + U] T2z — 2dt [A + a(k)p],

with

A= (€7 (DELE) — (07 (@)nf (0)) (6)
1 t

p =7 (D03 (@) = ((e1(Des (D) ()ef (D), (7)

where n, (2) is the charge (v = 0) and spin (v = 1,2, 3)
density operator. 7 is the residual term as it is orthog-
onal, in the sense of the averaged anticommutators,
to the basic field v; it contains the two-site compos-
ite excitations. The thermal retarded Green’s function
G(k,w) = F(R[(i),1T(§)]) has the structure,

1

Glkw) = —— K —Sw) ®)

where the self-energy Y (k,w) reads as,

1

2 = T k)

B(k,w)I ™, 9)
with A(k,w) = F(R[64,%1]) and B(k,w)
By neglecting dj (i.e., by setting X (k,w) = 0) we ob-
tain a generalized mean field approximation in terms
of the Hubbard operators, which shows a two-band
structure [2]. To improve the solution beyond the two-
pole approximation, we need to take into account the
self-energy contribution.

In order to do this, we introduce a 6-component basis

¢ which reads as: ¢1(2) = £(4), v2(i) = n(7) and
( fw Z Oéwgw Z] (10)
@a(i) = Nso (i) = 7o (i) — Eso(4) Z ;s (i) (11)
( gw Zawgw JZ (12)
o (i) = fiso (i) = Z Qi sa (i) (13)
with
Eoo (i) = (1/2 = 1 (0))€a (4) + €L, (D)eo (1)6-a (5)
= o (f)ea(i)e—o(i) (14)
s (i) = (1/2 = n—o ()0 (7) + ¢’ 4 (D)ea ()10 ()

= F(R[55,85']).

— &L (Deo()e—q(i). (15)

1 to @4 will permit us to exactly rewrite

5;’(1):( iﬁ?) (16)
NT
i) = E_: Z An (i, 5)¢n (5) (17)

where A(k) = F[A(4,7)] has the following expression

M(k) =2dt[A+ ak)(p+ [11/2 — I22)] /Tin~ (18)
A3 (k) = (k) = —2dt (20)

Accordingly, A(k,w) and B(k,w) can be exactly
rewritten in terms of S(k,w) = F(R[e (i), (§)]).

Then, we linearize the equation of motion of ¢
by means of a two-site approximation reducing any
higher-order field to its two-site component and explic-
itly preserving the particle-hole symmetry. This latter
requirement forced the introduction of s and s [3]. It
is worth mentioning that the four fields &, n, & and 7,
are a complete fermionic set of eigenoperators for the
two-site Hubbard model [4] and exactly describe its
two relevant scales of energy U and J = 4> /U. Then,
with the approximate expression of the propagator
S(k,w) we can finally compute the self-energy > (k, w)
and the thermal retarded Green’s function G(k,w).

We are left with the problem of fixing the parame-
ters A, p and p. A can be computed, through its def-
inition, directly from the Green’s function. p and p
will be computed self-consistently from the constraint
(67(4)n(7)) = 0 required by the Pauli principle and the
equation defining the electron number density (n) as a
function of the Green’s function elements.

The presented procedure will give us a solution with
a very rich band structure which is well beyond the one
obtained by the two-pole approximation. The details
of the formula and the computational implementation
will be presented elsewhere.
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