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Abstract

The mixtures of quantum degenerate bose and fermi gases in highly anisotropic traps at zero temperature are
studied. It is found that under some conditions the system becomes unstable with respect to the spontaneous
formation of the collective mode with wave-vector 2kr (kr is a Fermi wave-vector) by exploring the Bogoliubov
phonon spectrum. This type of instability is the analogue of Peierls instability in quasi-one-dimensional conductors.
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1. Introduction

The development in the trapping techniques of
atoms has allowed the achievement of gases which
can be considered as one-dimensional (1D). Recently,
the realization of Bose-Einstein condensation (BEC)
in 1D systems has been reported at MIT [1]. In this
paper, we study the mixtures of spin-polarized bose
and fermi atoms of mass m, trapped in an external
potential U(r) = Im{w?(2® + y°) + wi 2’} (we > wi),
at zero temperature.

The system can be modeled by the following Hamil-
tonian:

H= /dSmﬁ ( —V?+U(r) - >q3(r)
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where ¢M(r) and ¥ (r) are bosonic and fermionic
annihilation (creation) operators. ay,(> 0) and ayy are
the s-wave scattering lengths for the repulsive boson-
boson and boson-fermion scatterings. The chemical po-
tentials pup and py are determined from the condensed
boson and fermion numbers Ny and Nr

It is known that the phonon-electron interaction in
quasi-1D conductors produces a giant Kohn anomaly
in the phonon spectrum and causes a Peierls instability
[2]. Turning to atomic bose-fermi mixtures, the inter-
action between Bogoliubov phonon and fermion would
give an analogous effect. In the quasi-1D regime where
any longitudinal excitations have lower energy than the
transverse excitation energy hw:, the transverse wave
function of bosons and fermions remain the ground
state in 2D harmonic oscillator potential: ¢iS(z,y). In
this case, the interaction between particles acquires 3D
character and the effective 1D coupling constant will
be characterized by g;lfbf = 2hwiaps,bs[3]-

The boson operator qg is separated into the conden-
sate wave function v/Nowo(2)oh8 (2, y) = (¢) and fluc-
tuation part ¢’. In the Bogoliubov approximation ¢’ is
expressed in terms of quasi-particle operators B,\ and
51 through ¢/ (r) = 37, {ur () — v3(2) 3] Y655 (2, ).
On the Bogohubov phonon spectrum we consider
only the Bogoliubov phonon self-energy arisen from
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the coupling to fermion-hole pair excitations (ne-
glecting Hartree potential), because we are interested
in the Kohn anomaly. Using the eigenenergy ° =
hw:(n + 3)(n = 0,1,2,---) and wave function ¢°
in 1D harmonic oscillator potential, we express the
quasiparticle amplitudes ux and vy through ux(z) =
Yo undn’(z), va(z) = >, vadn’(z). We can obtain
the excitation energies €y solving the equations for the
coefficients u)) and v;),

> [en -

n

Z [(EZO + 6%)&%,71“2 + hHmn(EA)(Ug — Ujl):l =0. (3)

n

€x)0mntipy + AlLn (€x) (up — vﬁ)] =0 (2)

The Bogoliubov phonon self energy All,,, is given by

(mh|p0)(Op|hn)
€x — €p° + 6}3

Al (e) = (55 )*No ) [
ph

(mp| h0)(Oh|pn)

_e,\—eﬁo—l—e;g]. )

The matrix elements can be calculated as (mh|p0) =
f dzglophre Zocpo, where the fermionic wave function
has been replaced by ¢{° and p(> nr)/h(< nr) denote
particle/hole states. The n is the number of fermions
in the last occupied state.

2. Peierls instability condition

We restrict the parameter region: w; > ,U/}'D > ,u,l)D >
hw; where /L,l)’Df = pp,f — hwe. Under these conditions
we give several approximations. i) Condensate wave
function in Thomas-Fermi regime (pi? > hwy) : o

1/2

[1 - ZZ;F} / 0(zrr — |2]), 277 = V2ano(3NoB/4V2)
(B = 77”Lg,1,,Daho/7i2 where apo = /h/mw; is a lon-
gitudinal oscillator length). ii) Asymptotic expansion
of ¢° in the middle of the trap for the higher nodal
modes n ~ np > 1 : ¢"°(2) o cos (knz — "T"), |z| <

2nano (kn = v2n/ano). iii) In case we discuss the
higher nodal modes (~ nr) the negative energy ampli-
tude v), of Eq.(2) can be neglected.

On the basis of these approximations we can calcu-
late the matrix elements as

Ji (ZTmeh)
h|p0) o M2 2
<’ITL |p > X Cp ZTFKZ;nh

Ji(zrrK})
zrr K}

4 HGrr )
h ZTFK;:np

mph J1 (ZTFKmhp)

+C ZTFKmhp

+Cph , (5)
where Cs are constants and Ks are wave-vector dif-
ferences between initial and finial states, e.g., K;”h =

km + kn — kp. In the case of |z| > 1 the asymptotic ex-
pansion of the Bessel function is obtained as Ji (z)/x ~
|| =3/2, so that the only term with |z| < O(1) con-
tributes to the matrix element. Under the restriction
of wave vectors kn < kr, kp > krp with k, ~ 2kp
(kr = V/2nr/ano), the main contributions are the
second and third terms of Eq. (5). In order to sim-

. L Ji(ey) Ji(ze)
plify the algebra even further we take: 195—1“ 195—’2”2 ~

160(1 —|21[)0(1 — |z1 — 72|), and replace the sum Zp’h
by f dp f dh in the continuum limit.

Finally, we can get the eigenenergy for a collective
state with k, = 2kr (vrP = hkr/m, er = h?k%/2m),

(95 )*n0(0)

hwy = dep —
A r 2mhup

In [4kpzrR|. (6)

This equation is no longer correct for the system which
satisfies the condition

¢V
1< ZE In |4k3FZTF| (7)
where vg = /giPn0(0)/m and ¢ = (g,7)?/mgiy hvr.

Eq.(7) is the condition for the Peierls instability where
BEC may occur at a k, >~ 2kr state in addition to the
ordinary n = 0 state.

Lets us look at the values of the parameters for ac-
tual experimental conditions. We can express the veloc-

2
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ity ratio and dimensionless coupling constant as —U;’? =
F

2/3 2
L (3NgeL o = 2w bf A i

= . 0OSS1-
4Ny W] Apo 7( 2Ny Wi appano p

ble candidate for Peierls instability does is the rubid-
ium isotope system: ¥ Rb—5Rb mixtures. We take
for the scattering lengths apy = 5.3[nm| and apy =
29.1[nm] given in [4] and trapping frequencies of w, =
27 x 10[Hz] and w; = 27 x 15[kHz]. We can find the
parameters Ny = 10%, No = 2 x 10, (v%/v% = 0.67,
¢ = 0.99), which satisfied with the condition of Eq. (7).
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