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Abstract

The mixtures of quantum degenerate bose and fermi gases in highly anisotropic traps at zero temperature are
studied. It is found that under some conditions the system becomes unstable with respect to the spontaneous
formation of the collective mode with wave-vector 2kF (kF is a Fermi wave-vector) by exploring the Bogoliubov
phonon spectrum. This type of instability is the analogue of Peierls instability in quasi-one-dimensional conductors.
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1. Introduction

The development in the trapping techniques of
atoms has allowed the achievement of gases which
can be considered as one-dimensional (1D). Recently,
the realization of Bose-Einstein condensation (BEC)
in 1D systems has been reported at MIT [1]. In this
paper, we study the mixtures of spin-polarized bose
and fermi atoms of mass m, trapped in an external
potential U(r) = 1

2
m{ω2

t (x2 + y2) + ω2
l z

2} (ωt � ωl),
at zero temperature.

The system can be modeled by the following Hamil-
tonian:

H =

∫
d3rφ̂†(r)

(
− h̄2

2m
∇2 + U(r) − µb

)
φ̂(r)

+

∫
d3rψ̂†(r)

(
− h̄2

2m
∇2 + U(r) − µf

)
ψ̂(r)

+
2πh̄2abb

m

∫
d3rφ̂†(r)φ̂†(r)φ̂(r)φ̂(r)

+
4πh̄2abf

m

∫
d3rφ̂†(r)ψ̂†(r)ψ̂(r)φ̂(r), (1)
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where φ̂(†)(r) and ψ̂(†)(r) are bosonic and fermionic
annihilation (creation) operators. abb(> 0) and abf are
the s-wave scattering lengths for the repulsive boson-
boson and boson-fermion scatterings. The chemical po-
tentials µb and µf are determined from the condensed
boson and fermion numbers N0 and NF

It is known that the phonon-electron interaction in
quasi-1D conductors produces a giant Kohn anomaly
in the phonon spectrum and causes a Peierls instability
[2]. Turning to atomic bose-fermi mixtures, the inter-
action between Bogoliubov phonon and fermion would
give an analogous effect. In the quasi-1D regime where
any longitudinal excitations have lower energy than the
transverse excitation energy h̄ωt, the transverse wave
function of bosons and fermions remain the ground
state in 2D harmonic oscillator potential: φho

00 (x, y). In
this case, the interaction between particles acquires 3D
character and the effective 1D coupling constant will
be characterized by g1D

bb,bf = 2h̄ωtabb,bf [3].

The boson operator φ̂ is separated into the conden-
sate wave function

√
N0ϕ0(z)φ

ho
00 (x, y) = 〈φ̂〉 and fluc-

tuation part φ̂′. In the Bogoliubov approximation φ̂′ is
expressed in terms of quasi-particle operators β̂λ and
β̂†

λ through φ̂′(r) =
∑

λ
{uλ(z)β̂λ − v∗λ(z)β̂†

λ}φho
00 (x, y).

On the Bogoliubov phonon spectrum we consider
only the Bogoliubov phonon self-energy arisen from
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the coupling to fermion-hole pair excitations (ne-
glecting Hartree potential), because we are interested
in the Kohn anomaly. Using the eigenenergy εho

n =
h̄ωz(n + 1

2 )(n = 0, 1, 2, · · ·) and wave function φho
n

in 1D harmonic oscillator potential, we express the
quasiparticle amplitudes uλ and vλ through uλ(z) =∑

n
uλ

nφ
ho
n (z), vλ(z) =

∑
n
vλ

nφ
ho
n (z). We can obtain

the excitation energies ελ solving the equations for the
coefficients uλ

n and vλ
n,

∑
n

[
(εho

n − ελ)δm,nu
λ
n + h̄Πmn(ελ)(uλ

n − vλ
n)

]
= 0 (2)

∑
n

[
(εho

n + ελ)δm,nv
λ
n + h̄Πmn(ελ)(vλ

n − uλ
n)

]
= 0. (3)

The Bogoliubov phonon self energy h̄Πmn is given by

h̄Πmn(ελ) = (g1D
bf )2N0

∑
ph

[
〈mh|p0〉〈0p|hn〉
ελ − εho

p + ε1D
h,f

−〈mp|h0〉〈0h|pn〉
ελ − εho

h + ε1D
p,f

]
. (4)

The matrix elements can be calculated as 〈mh|p0〉 =∫
dzφho

m φho
h φho

p ϕ0, where the fermionic wave function

has been replaced by φho
n and p(> nF )/h(< nF ) denote

particle/hole states. The nF is the number of fermions
in the last occupied state.

2. Peierls instability condition

We restrict the parameter region:ωt > µ1D
f > µ1D

b >

h̄ωl where µ1D
b,f = µb,f − h̄ωt. Under these conditions

we give several approximations. i) Condensate wave
function in Thomas-Fermi regime (µ1D

b > h̄ωl) : ϕ0 ∝[
1 − z2

z2
TF

]1/2

θ(zTF − |z|), zTF =
√

2aho(3N0β/4
√

2)

(β = mg1D
bb aho/h̄

2 where aho =
√
h̄/mωz is a lon-

gitudinal oscillator length). ii) Asymptotic expansion
of φho

n in the middle of the trap for the higher nodal
modes n ∼ nF � 1 : φho

n (z) ∝ cos
(
knz − nπ

2

)
, |z| <√

2naho (kn =
√

2n/aho). iii) In case we discuss the
higher nodal modes (∼ nF ) the negative energy ampli-
tude vλ

n of Eq.(2) can be neglected.
On the basis of these approximations we can calcu-

late the matrix elements as

〈mh|p0〉 ∝ Cmh
p

J1(zTFK
mh
p )

zTFKmh
p

+Cmp
h

J1(zTFK
mp
h )

zTFK
mp
h

+Cm
ph

J1(zTFK
m
ph)

zTFKm
ph

+Cmph J1(zTFK
mhp)

zTFKmhp
, (5)

where Cs are constants and Ks are wave-vector dif-
ferences between initial and finial states, e.g., Kmh

p =

km +kh −kp. In the case of |x| � 1 the asymptotic ex-
pansion of the Bessel function is obtained as J1(x)/x ∼
|x|−3/2, so that the only term with |x| ≤ O(1) con-
tributes to the matrix element. Under the restriction
of wave vectors kh ≤ kF , kp > kF with kn ∼ 2kF

(kF =
√

2nF /aho), the main contributions are the
second and third terms of Eq. (5). In order to sim-

plify the algebra even further we take: J1(x1)
x1

J1(x2)
x2

	
1
4θ(1−|x1|)θ(1−|x1−x2|), and replace the sum

∑
p,h

by
∫

dp
∫

dh in the continuum limit.
Finally, we can get the eigenenergy for a collective

state with kn = 2kF (vF = h̄kF /m, εF = h̄2k2
F /2m),

h̄ωλ = 4εF − (g1D
bf )2n0(0)

2πh̄vF
ln |4kF zTF |. (6)

This equation is no longer correct for the system which
satisfies the condition

1 <
ζ

4

v2
B

v2
F

ln |4kF zTF | (7)

where vB =
√
g1D

bb n0(0)/m and ζ = (g1D
bf )2/πg1D

bb h̄vF .
Eq.(7) is the condition for the Peierls instability where
BEC may occur at a kn 	 2kF state in addition to the
ordinary n = 0 state.

Lets us look at the values of the parameters for ac-
tual experimental conditions. We can express the veloc-

ity ratio and dimensionless coupling constant as
v2

B

v2
F

=

1
4Nf

(
3N0

ωt
ωl

abb
aho

)2/3

, ζ =
√

2
π2Nf

ωt
ωl

a2
bf

abbaho
. A possi-

ble candidate for Peierls instability does is the rubid-
ium isotope system: 87Rb−84Rb mixtures. We take
for the scattering lengths abb = 5.3[nm] and abf =
29.1[nm] given in [4] and trapping frequencies of ωl =
2π × 10[Hz] and ωt = 2π × 15[kHz]. We can find the
parameters Nf = 103, N0 = 2 × 104, (v2

B/v
2
F = 0.67,

ζ = 0.99), which satisfied with the condition of Eq. (7).
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