

Spin fluctuations in heavy-Fermion compounds YbZnCu_4 and YbAuCu_4 , investigated by ^{63}Cu NMR/NQR

Takehide Koyama ^a, Takeshi Mito ^a, Shinji Wada ^a, John L. Sarrao ^b,

^aDepartment of Material Science, Graduate School of Science & Technology, and Department of Physics, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan

^b Los Alamos National Laboratory, Mail stop K 762, Los Alamos, NM 87545, USA

Abstract

We have investigated microscopically the heavy-Fermion properties of YbZnCu_4 and YbAuCu_4 with ^{63}Cu NMR and PQR measurements. Both the isotropic and axial Knight shifts for each of the compounds showed a Curie-Weiss-type behavior, which is indicative of the localized Yb^{3+} moments. The nuclear spin-lattice relaxation rate $(T_1 T)^{-1}$ for YbZnCu_4 above 1.4K and for YbAuCu_4 above ~ 50 K was proportional to the uniform susceptibility χ , indicating that the correlation time τ_f^{-1} of Yb-spins is nearly independent of temperature. $(T_1 T)^{-1}$ for YbAuCu_4 below ~ 50 K exhibited a prominent increase associated probably with the decrease in τ_f^{-1} to the Kondo fluctuation rate $\tau_K^{-1} = k_B T_K / \hbar$.

Key words: heavy Fermion; spin fluctuations; Ytterbium cuprate;

The $\text{Yb}X\text{Cu}_4$ series (X =rare transition-metal elements) with cubic C15b (AuBe_5)-type crystal structure shows a wide variety of physical properties with the species of X atoms. Among the compounds, YbAuCu_4 is a prototypical heavy-Fermion compound (electronic specific heat coefficient $\gamma \sim 150$ mJ/mol, Kondo temperature $T_K \sim 2$ K) and exhibits antiferromagnetic ordering below 1K [1]. While YbZnCu_4 ($\gamma \sim 150$ mJ/mol, $T_K \sim 30$ K) has been relatively less studied. The magnetic susceptibility χ of YbZnCu_4 showed a Curie-Weiss-type behavior at high temperatures with a ferromagnetic increase below ~ 30 K. From the large upturn in the electronic resistivity at low temperatures, YbZnCu_4 has been suggested to be a failed Kondo semimetal [1].

In this paper, we report the results of the nuclear magnetic resonance (NMR) and pure quadrupole resonance (PQR) of ^{63}Cu in YbZnCu_4 and YbAuCu_4 , which can provide microscopic information on the static and dynamical properties of Yb spins.

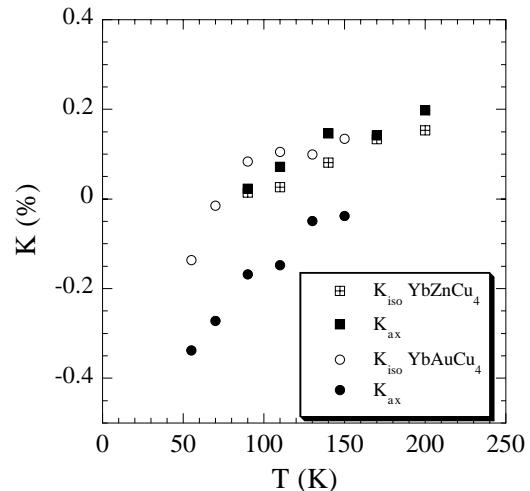


Fig. 1. Temperature dependence of the isotropic and axial knight shift for YbZnCu_4 and YbAuCu_4 .

The ^{63}Cu NMR measurement was carried out under magnetic fields of ~ 7 T with a phase-coherent pulsed

¹ E-mail:koyama@cphys.cla.kobe-u.ac.jp

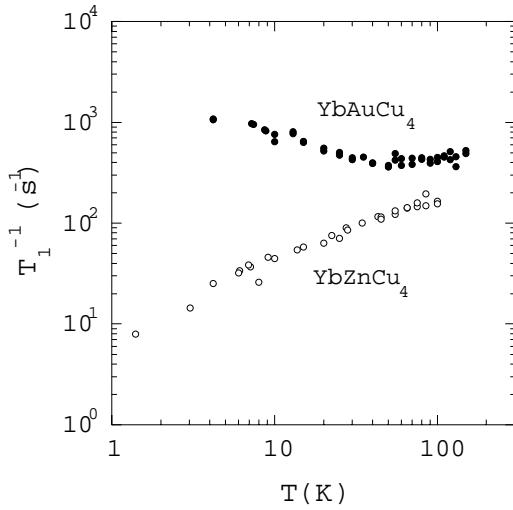


Fig. 2. Temperature dependence of the ^{63}Cu relaxation rate T_1^{-1} in each of YbZnCu_4 and YbAuCu_4 .

spectrometer operating at a constant frequency of 75 MHz. The NMR spectra exhibit the general electric-quadrupole split powder-pattern, and the values of the isotropic Knight shift K_{iso} and axial Kight shift K_{ax} are deduced from the spectrum analysis described in ref. [2]. For the temperatures below ~ 40 K, we could not obtain any reliable values of the Knight shift, because of the severe broadening of the line width. Fig. 1 shows the temperature dependence of K_{iso} and K_{ax} for YbZnCu_4 . The data for YbAuCu_4 in the figure were cited from our previous report [2]. Both K_{iso} and K_{ax} for each of the compounds exhibit the Curie-Weiss type behavior, that can be ascribed to the localized Yb^{3+} moment. The Knight shift versus susceptibility plots are on a straight line, and the slope gives the value of anisotropic and isotropic terms of the transferred hyperfine coupling constants $H_{\text{hf}}^{\text{iso}}(\text{tr})$ and $H_{\text{hf}}^{\text{ax}}(\text{tr})$ as follows: -1.3 and -1.4 kOe/ μ_B for YbZnCu_4 ; -0.97 and -1.2 kOe/ μ_B for YbAuCu_4 .

The spin-lattice relaxation rate T_1^{-1} of ^{63}Cu was measured at peak intensity of the PQR line: 8.9 MHz for YbAuCu_4 ; 12.6 MHz for YbZnCu_4 . Fig. 2 shows the temperature dependence of T_1^{-1} for each of the compounds. The data for YbAuCu_4 are in good agreement with that reported by Nakamura *et al.* [3]. The T_1^{-1} data for each of the compounds do not obey the Korringa-like relation ($T_1 T = \text{const.}$) within the present experimental temperature range. Then we replotted in Fig. 3 the $(T_1 T)^{-1}$ data against the corresponding χ data. For the relaxation process to the fluctuating local moments with the correlation time τ_f , the relaxation rate is given by [4]

$$(T_1 T)^{-1} = 2z\gamma_n^2 k_B H_{\text{hf}}(\text{tr})^2 \frac{\chi}{\mu_B N} \tau_f, \quad (1)$$

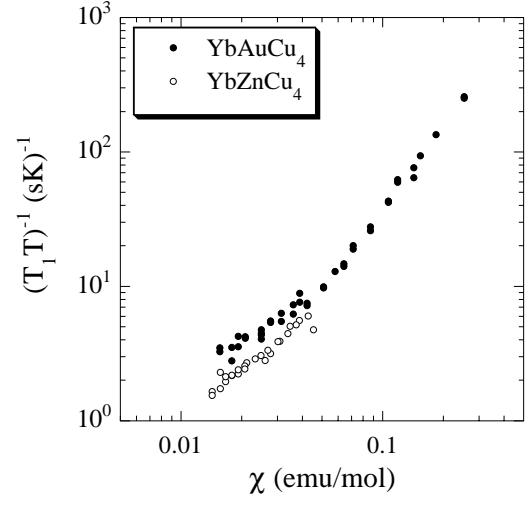


Fig. 3. $(T_1 T)^{-1}$ versus χ plots for each of the YbZnCu_4 and YbAuCu_4 compounds.

assuming a Lorentzian shape of fluctuation spectrum and $\chi(q) \sim \chi(0)$. Here, γ_n is the nuclear gyromagnetic ratio, z the number of neiboring spins, and N the Avogadro's number. The linear dependence of $(T_1 T)^{-1}$ on χ for YbZnCu_4 above 1.4 K and for YbAuCu_4 above ~ 50 K indicates that τ_f is nearly independent of the temperature. This is consistent with the strongly localized scheme for the $4f$ moments in these compounds. Taking the experimental values of $(T_1 T)^{-1}$ and $H_{\text{hf}}^{\text{iso}}(\text{tr})$ at high temperatures, we can estimate an order of f spin fluctuation energy T_f ($= \hbar/k_B \tau_f$) as ~ 100 K for YbZnCu_4 and ~ 20 K for YbAuCu_4 , respectively.

For YbAuCu_4 , $(T_1 T)^{-1}$ below ~ 50 K exhibited a prominent increase, and deviates from the linear dependence on χ . If we bravely use eq. (1) for the $(T_1 T)^{-1}$ data below ~ 50 K, though it is not really very satisfactory for the correlated spin system, τ_f^{-1} decreases monotonously and approaches the order of 1 K. It is worth noting that $\tau_f \sim 1$ K can reasonably be compared with T_K . The temperature independent $\tau_f \sim$ for YbZnCu_4 down to 1.4 K suggests that the Kondo temperature for YbZnCu_4 is much lowere than $T_K \sim 30$ K estimated from the χ data. The lack of a predominant Kondo compensation of $4f$ moments in YbZnCu_4 down to ~ 1 K is considered to be consistent with the Kondo semimetal behavior observed in the resistivity.

References

- [1] J. L. Sarrao *et al.*, Phys. Rev. B **59** (1999) 6855.
- [2] T Koyama *et al.*, Res. Rev. B **66** (2002) in print.
- [3] H. Nakamura *et al.*, J. Phys. Soc. Jpn. **65**, (1996) Suppl. B 168.
- [4] D. E. MacLaughlin *et al.* Phys. Rev. B **31** (1985) 6963.