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Abstract

We study the topological effects of dimer configuration on the high energy dynamics of aligned dimers: alternating
spin chains and two-leg spin ladders, with impurites. The well-defined modes at high temperatures obtained by
the continued fraction formalism beyond the conventional perturbational approaches are ω = 1 and ω = 2 for
alternating spin chains and ω = 2 for two-leg spin ladders. The frequency unit is an antiferromagnetic exchange
integral between the spins in a dimer. These characteristic modes strongly localized in clean systems survive the
random disturbance in systems with impurities of 10 % concentration or less.
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1. Model and formulation

We investigate the dynamical properties at T = ∞
in the aligned dimers described by the Hamiltonian,

H =
∑

i

(�2i ·�2i+1 − α�2i−1 ·�2i − λ�i ·�i+2), (1)

where a vector � on a site denotes a S = 1/2 operator
and we set the antiferromagnetic exchange integral in
a dimer as JAF ≡ 1. We study the weakly interacting
dimers, where each spin in a dimer weakly interacts
with the nearest neighbor spin(s) in an adjacent dimer:
the alternating spin chains are given by α2 � 1 and
λ = 0; the two-leg spin ladders by λ2 � 1 and α = 0.

We choose the dynamical variable, A, a sum of the
spin z-component in a certain dimer as

A = Sz
2j + Sz

2j+1, (2)

and evaluate the canonical correlation function defined
by (A(t), A) ≡ β−1

∫ β

0
〈A(t − ih̄λ)A†〉dλ − 〈A(t)〉〈A†〉

with 〈O〉 = Tr[Oe−βH ]/Tr[e−βH ] and β = 1/kBT .
The Laplace transform of a0(t) = (A(t), A)(A,A)−1 =
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(1/2πi)
∮

dzezta0(z) is written in a continued fraction
[1] with a recurrence relation [2]:

a0(z) =
1

z +
∆1

z +
∆2

z + · · ·

, (3)

∆n = (fn, f †
n) (fn−1, f †

n−1)
−1, (4)

fn+1 = iLfn + ∆n fn−1, (5)

where the Liouville operator iL is defined as iLO =
(i/h̄) [H,O]−. We choose Eq. (2) as f0, i.e., f0 = A.
The boundary conditions are ∆0 = 1 and f−1 = 0.
Equation (4) of the static quantities determines the dy-
namical behaviors of a system. Equation (5) helps clas-
sify the excitation modes and leads to the expansion of
A(t) as A(t) = eiHt/h̄Ae−iHt/h̄ =

∑
n=0

an(t)fn. The
orthogonality of the basis vectors {fn} implies that
(fµ, fν) ∝ δµν . We evaluate the scalar product at T =
∞, i.e., β → 0, by neglecting fluctuations and taking
the trace of operator products owing to e−βH = 1.
Thus we have, for instance, (f0, f0) = 〈A2〉 = 2a with
a = S(S + 1)h̄2/3 = 1/4 to set h̄ ≡ 1.
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2. Alternating spin chains: �2
� 1 and � = 0

The dynamics for α2 � 1 and λ = 0 has been stud-
ied for the Heisenberg model with � = (Sx, Sy , Sz)
[3,4]. Equation (4) is {∆1, ∆2,∆3,∆4,∆5,∆6} �
{2aα2, 4a, 6a, 6a, 4a,O(α2)} and ∆n≥7 = O(a). We
assume that the dip keeps at n = 6 in the infinite {∆n}
and then approximate ∆n≥8 = ∆7 in Eq. (3) to have

a0(z) =
z(z4 + 5z2 + 4)

z2(z4 + 5z2 + 4) + g(z, α)
. (6)

The factor of g(z, α) ∝ α2 produces well-defined peaks,
no shoulders, over the Lorentzian-like tail at

|ω| = 1, 2 (7)

owing to z4+5z2 +4 = (z−2i)(z−i)(z+i)(z+2i). The
result is beyond that obtained by the conventional per-
turbational approach. Equation (6) with α = 0 leads to
a0(z) = z−1 and Re a0(−iω+) = πδ(ω), which means
that Eq. (2) is a constant of motion.

We pay attention to Eq. (5), the basis vectors {fn} of
alternating spin chains to characterize the high energy
excitations at Eq. (7). The largest elements in {fn≤5}
are written by the 6-spin alignments with 3 dimers:

(S2j−4S2j−3S2j−2S2j−1S2jS2j+1),

(S2j−2S2j−1S2jS2j+1S2j+2S2j+3),

(S2jS2j+1S2j+2S2j+3S2j+4S2j+5). (8)

The delocalization energy would correspond to the sin-
gle singlet-to-triplet local excitation, 1 = 1/4−(−3/4),
in a dimer within a 6-spin alignment in (8), and twice
to the double one in 2 dimers within it. Each spin fluc-
tuates not freely at all, but with very short-ranged and
very weak correlations still existing at T = ∞.

3. Two-leg spin ladders: �2
� 1 and � = 0

The dynamics for λ2 � 1 and α = 0 has also been
clarified for the Heisenberg model [5]. Equation (4)
is {∆1,∆2,∆3,∆4, } � {8aλ2 , 4a, 12a, O(λ2)} and
∆n≥5 = O(a). We assume that the dip keeps at n = 4
in the infinite {∆n} and then approximate ∆n≥6 = ∆5

in Eq. (3) to have

a0(z) =
z(z2 + 4)

z2(z2 + 4) + h(z,λ)
(9)

with h(z,λ) ∝ λ2, which produces well-defined peak at

|ω| = 2. (10)

To see the high energy excitation at Eq. (10), we
again return to Eq. (5), the basis vectors {fn≤3} for the

two-leg spin ladders. The largest elements in {fn≤3}
are the 4-spin alignments with 2 dimers:

(S2j−2S2j−1S2jS2j+1),

(S2jS2j+1S2j+2S2j+3). (11)

The delocalization energy would be ω = 1; however, it
is not this but ω = 2, Eq. (10), corresponding to the
double singlet-to-triplet local excitation within 4-spin
alignments in (11)

4. Aligned dimers with impurities

The previous sections are devoted to the topologi-
cal effects of dimer configuration on the high energy
dynamics of aligned dimers: how geometrically we put
dimers in line affects the dynamics of such system.

When a small amount of energy is accidentally
turned on in a dimer, �2j + �2j+1, written by site
j shown in Eq. (2) out of

∑
i

in Eq. (1), how does
this energy delocalize in aligned dimers? For the alter-
nating spin chains, the well-defined excitation modes
described by Eq. (7) produced in 10 spins of (8) carry
the energy to spread out away from the dimer via the
spins �2j−5 and �2j+6. Similarly, for the two-leg spin
ladders, the well-defined excitation modes described
by Eq. (10) produced in 6 spins of (11) carry the en-
ergy to spread out away from the dimer via the spins
�2j−3 and �2j+4.

If an impurity sits on a site away from 2j − 5 and
2j + 6 for the alternating chains and from 2j − 3 and
2j + 4 for the two-leg spin ladders, then the strongly-
localized modes produced in spins of (8) and (11) may
not be affected by that impurity, respectively. The crit-
ical value of impurity concentration is, respectively,
about 1/(10 + 2) � 0.08 and 1/(6 + 2) � 0.12. There-
fore, when impurities are randomly distributed in a sys-
tem, we expect that the characteristic modes strongly
localized in clean systems survive the random distur-
bance in systems with impurities of 10 % concentration
or less.

This site dependent dynamical study is relevant to
experiments such as neutron scattering, Raman scat-
tering and ESR.
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