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Abstract

We study the topological effects of dimer configuration on the high energy dynamics of aligned dimers: alternating
spin chains and two-leg spin ladders, with impurites. The well-defined modes at high temperatures obtained by
the continued fraction formalism beyond the conventional perturbational approaches are w = 1 and w = 2 for
alternating spin chains and w = 2 for two-leg spin ladders. The frequency unit is an antiferromagnetic exchange
integral between the spins in a dimer. These characteristic modes strongly localized in clean systems survive the

random disturbance in systems with impurities of 10 % concentration or less.
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1. Model and formulation

We investigate the dynamical properties at T' = oo
in the aligned dimers described by the Hamiltonian,

H= Z(SQ'L - Soip1 — aS2i—1- 82 — AS; - Sit2), (1)

7

where a vector S on a site denotes a S = 1/2 operator
and we set the antiferromagnetic exchange integral in
a dimer as Jar = 1. We study the weakly interacting
dimers, where each spin in a dimer weakly interacts
with the nearest neighbor spin(s) in an adjacent dimer:
the alternating spin chains are given by o® < 1 and
X = 0; the two-leg spin ladders by A < 1 and a = 0.

We choose the dynamical variable, A, a sum of the
spin z-component in a certain dimer as

A= S5+ S5;41, (2)

and evaluate the canonical correlation function defined
by (A(), A) = B~ [(A(t — ihA)AT)dA — (A(1))(AT)
with (O) = Tr[Oe ?H]/Tr[e "] and 8 = 1/ksT.
The Laplace transform of ao(t) = (A(t), A)(A,A) ' =
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(1/2i) § dze**ao(z) is written in a continued fraction
[1] with a recurrence relation [2]:

1

ao(z) = A , (3)
z + A,
z + ﬁ
An=frr F3) (Fuers F1o070 (4)
fnr1 =iLfn + An fu-1, (5)

where the Liouville operator iL is defined as iLO =
(i/h) [H,O]-. We choose Eq. (2) as fo, i.e., fo = A.
The boundary conditions are Ag = 1 and f_; = 0.
Equation (4) of the static quantities determines the dy-
namical behaviors of a system. Equation (5) helps clas-
sify the excitation modes and leads to the expansion of
A(t) as A(t) = e /M Ae M = N 4 (t) fn. The
orthogonality of the basis vectors {f,} implies that
(fu, fv) o 0,,. We evaluate the scalar product at T' =
0, i.e., B — 0, by neglecting fluctuations and taking
the trace of operator products owing to e #% = 1.
Thus we have, for instance, (fo, fo) = (A?) = 2a with
a=S(S+1)h*/3=1/4toset h = 1.
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2. Alternating spin chains: o* € 1and A =0

The dynamics for o < 1 and A = 0 has been stud-
ied for the Heisenberg model with S = (S%,5Y,5%)
[3,4] Equation (4) is {A17A27A37A4,A5,A6} >~
{2a0?, 4a,6a,6a,4a,0(a?)} and A,>7 = O(a). We
assume that the dip keeps at n = 6 in the infinite {A,}
and then approximate A,>s = A7 in Eq. (3) to have

olz) = 2(2* + 522 4 4)
0 T 22(24 4522+ 4) + g(z,0)

(6)

The factor of g(z, @) x a? produces well-defined peaks,
no shoulders, over the Lorentzian-like tail at

lw| =1, 2 (7)

owing to z* 4+52% 44 = (z—2i) (2 —1)(2+1i) (2 +2i). The
result is beyond that obtained by the conventional per-
turbational approach. Equation (6) with a = 0 leads to
@o(z) = 27+ and Re ao(—iw™") = 76(w), which means
that Eq. (2) is a constant of motion.

We pay attention to Eq. (5), the basis vectors { f, } of
alternating spin chains to characterize the high energy
excitations at Eq. (7). The largest elements in {f,<5}
are written by the 6-spin alignments with 3 dimers:

(S2j—452j-352j-252j-152jS25+1),
(S25-2527-152;52j+1525+252;+3),
(52582418242 52j+352j+452j+5)- (8)

The delocalization energy would correspond to the sin-
gle singlet-to-triplet local excitation, 1 = 1/4—(—3/4),
in a dimer within a 6-spin alignment in (8), and twice
to the double one in 2 dimers within it. Each spin fluc-
tuates not freely at all, but with very short-ranged and
very weak correlations still existing at T' = oo.

3. Two-leg spin ladders: A2 € 1 and o = 0

The dynamics for A> <« 1 and a = 0 has also been
clarified for the Heisenberg model [5]. Equation (4)
is {A1,A2,A3,A4,} ~ {8a)? 4a,12a,0(\*)} and
A,>5 = O(a). We assume that the dip keeps at n =4
in the infinite {A,} and then approximate A,>s = As
in Eq. (3) to have

_ B 2(22 4+ 4)
©E) = B D kN ®)

with h(z, ) o< A%, which produces well-defined peak at
lw] = 2. (10)

To see the high energy excitation at Eq. (10), we
again return to Eq. (5), the basis vectors { f,,<3 } for the

two-leg spin ladders. The largest elements in {f,<3s}
are the 4-spin alignments with 2 dimers:

(S25-252j-152j52j+1),
(82782j+182j+252j+3). (11)

The delocalization energy would be w = 1; however, it
is not this but w = 2, Eq. (10), corresponding to the
double singlet-to-triplet local excitation within 4-spin
alignments in (11)

4. Aligned dimers with impurities

The previous sections are devoted to the topologi-
cal effects of dimer configuration on the high energy
dynamics of aligned dimers: how geometrically we put
dimers in line affects the dynamics of such system.

When a small amount of energy is accidentally
turned on in a dimer, S2; + S2;41, written by site
Jj shown in Eq. (2) out of ) in Eq. (1), how does
this energy delocalize in aligned dimers? For the alter-
nating spin chains, the well-defined excitation modes
described by Eq. (7) produced in 10 spins of (8) carry
the energy to spread out away from the dimer via the
spins Soj_5 and Sg;46. Similarly, for the two-leg spin
ladders, the well-defined excitation modes described
by Eq. (10) produced in 6 spins of (11) carry the en-
ergy to spread out away from the dimer via the spins
ng_g and ng+4.

If an impurity sits on a site away from 2j — 5 and
2j + 6 for the alternating chains and from 2j — 3 and
2j + 4 for the two-leg spin ladders, then the strongly-
localized modes produced in spins of (8) and (11) may
not be affected by that impurity, respectively. The crit-
ical value of impurity concentration is, respectively,
about 1/(10 4+ 2) ~ 0.08 and 1/(6 4+ 2) ~ 0.12. There-
fore, when impurities are randomly distributed in a sys-
tem, we expect that the characteristic modes strongly
localized in clean systems survive the random distur-
bance in systems with impurities of 10 % concentration
or less.

This site dependent dynamical study is relevant to
experiments such as neutron scattering, Raman scat-
tering and ESR.
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