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Abstract

A discontinuous change of muon-spin precession frequencies in CaV3O7 is observed at T ∼ 0.2 K, indicating a
possible spin reorientation. Our results suggest that CaV3O7 possesses the identical spin direction as isostructural
SrV3O7 below ∼ 0.2 K, although the spin directions in the two compounds are different at higher temperatures as
determined by elastic neutron scattering.
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CaV3O7 contains a square lattice spin-1/2 Heisen-
berg system, in which 1/4 of the spin-1/2 vanadium
lattice points are periodically depleted. It has been re-
ported in neutron diffraction and susceptibility studies
that CaV3O7 undergoes a phase transition at T = 23
K [1]. The magnetic structure of CaV3O7 is identified
as so called a stripe phase, which consists of the chains
of ferromagnetically aligned spins pointing along the
c-axis with adjacent chains aligned antifferomagneti-
cally [1]. Theoretical study [2] shows that the stripe
phase is not stable in the framework of the classical
theory, but is stabilized by quantum fluctuations when
J ′/J > 0.69, where J and J′ denote the nearest and
the next nearest neighbor interactions, respectively. In
comparison with the theoretical and experimental re-
sults, the coupling constants are estimated as J′/J ∼
1. More detailed calculations for superexchange inter-
actions have been performed using the local density
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approximation with the Coulomb potential correction
of localized d electrons [3]. It has been found that the
nearest-neighbor interaction has opposite signs and dif-
ferent magnitudes with directions, leading to the clas-
sical ground state of the stripe phase as observed ex-
perimentally [1].

Figure 1 shows the µSR spectra of polycrystalline
CaV3O7. A clear muon precession is observed at low
temperatures, indicating the magnetic long range or-
der of the compound, with two frequencies forming a
beat. The existence of two frequencies implies two mag-
netically inequivalent muon environments. A possible
explanation for the existence of two frequencies is that
muons stop at two different locations in a magnetic unit
cell. The precession is suppressed around T ∼ 0.2 K,
and is recovered at higher temperatures. Moreover, a
discontinuous change in the frequencies is clearly seen
above and below∼ 0.2 K. As the temperature is further
increased, the frequencies become smaller and vanish-
ingly small at 23 K. The transition temperature is thus
determined as 23 K, consistent with the previous sus-
ceptibility and elastic neutron scattering experiments
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Fig. 1. µSR spectra in the polycrystalline specimen of CaV3O7

at several temperatures.

Fig. 2. Temperature dependences of the muon precession fre-

quencies of polycrystalline CaV3O7 and SrV3O7 .

[1].
Figure 2 shows the temperature dependence of the

muon precession frequencies in CaV3O7 determined by
fitting the µSR time spectra. The muon precession fre-
quency is proportional to an internal magnetic field at
the muon stopping sites, and thus is proportional to
magnetization. Note again the discontinuous change in
the frequencies at ∼ 0.2 K. The continuous decrease of
the frequencies towards 23 K indicates that the phase
transition is a second order transition.

We now compare the results in CaV3O7 with those
in isostructural SrV3O7 (TN = 35 K). We find that
two frequencies in CaV3O7 below ∼ 0.2 K have almost
the same value as those in SrV3O7 at 2 K (Fig. 2). We
thus expect that CaV3O7 has the identical magnetic
structure with SrV3O7 below ∼ 0.2 K, and changes its
magnetic structure above ∼ 0.2 K. A recent neutron

diffraction measurement determines that SrV3O7 has
the stripe phase as well, but with spins pointing along
the a-axis [5]. We therefore predict that in CaV3O7 the
spins are oriented along the a-axis below ∼ 0.2 K, and
are reoriented into the c-axis above ∼ 0.2 K.

The discontinuous change in the precession frequen-
cies might as well imply the change of muon stop-
ping sites, accompanied with muon diffusion. In fact,
the suppression of the precession due to the muon dif-
fusions is observed in the antiferromagnetic phase of
Ca0.86Sr0.14CuO2 (TN = 540 K) above 300 K [4]. How-
ever, it is less probable that muon diffusion due to ther-
mal excitations occurs at the temperature as low as 0.2
K. Furthermore, it is likely that at higher temperatures
the muons continue diffusing and the precession is sup-
pressed as in Ca0.86Sr0.14CuO2, whereas the recovery
of the precession is observed in CaV3O7. These consid-
erations lead us to interpret that the frequency jump
in CaV3O7 at ∼ 0.2 K is due to spin reorientation.

Similar discontinuities in magnetization have al-
ready been reported for several ferromagnets like FeS
[6] and CuCl2·2H2O [7], and have been ascribed to an
anisotropy in exhange interactions due to LS couplings
[8,9]. The discontinuous change of the muon-spin pre-
cession frequencies in CaV3O7 might indicate that
anistropic superexhange interactions possibly exists
as well.
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