
The fluctuation of a local magnetic field in underdoped cuprates

I. Kanazawa a,1

aDepartment of Physics, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan

Abstract

We have proposed the relationship between the spin freezing temperature and the planar hole content (Psh <∼
0.02) in underdoped cuprates from the chiral-like spin-glass mechanism.
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1. Introduction

Nuclear magnetic-nuclear quadrupole resonance [1]
and muon spin resonance experiments [2] show that
there exists the phenomenon, generally interpreted
in terms of ”glassy spin-freezing”, in underdoped
cuprates. Niedermayer et. al. [2] found a very inter-
esting result that the spin freezing temperature Tf

exhibits the same linear dependence on the planar
hole content, Psh, for Y. Ca-123 and La. Sr-214 in
lightly doped systems. (Psh <∼ 0.02). This transition
has been ascribed to a freezing of the spins of the
doped holes into a spin-glass state which is superim-
posed on the preexisting 3D AF long range order of
the Cu2+ spins [2]. The present author has proposed
the chiral-like spin-glass mechanism in underdoped
high-Tc cuprates in the mean-field approximate using
the replica method [3,4]. Recently Mook et. al. [5] by
means of inelastic neutron scattering measurements in
underdoped high-Tc cuprates (YBCO) detected lon-
gitudinal with respect to c-axis magnetic moment of
unknown origin. In the present study, we will present
the relationship between the spin freezing temperature
and the planar hole content (Psh <∼ 0.02) and an
origin of the magnetic moments longitudinal to c-axis
from chiral-like spin-glass mechanism.
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2. A model system

Though the symmetry breaking 〈0|φa|0〉 =
〈0, 0, µ(kF)〉, we can obtain the effective Lagrangian
density, Leff , at small doping of holes [3,4]. The value,
µ(kF) = 〈0|φ3|0〉, of the symmetry breaking depends
strongly on an angle of Fermi momentum, kF, on the
Fermi surface. That is, the value µ(kF), is much corre-
lated to the gap energy of the high energy pseudogap.
Thus, the value, µ(kF), is higher around the hot spot.
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where Si
a is the spin parameter, ψ is Fermi fields of

the hole, m1 = µ · g4, m2 = 2
√

2λ · µ. The effec-
tive Lagrangian describes two massive vector field
A1

µ and A2
µ, and one massless U(1) gauge field A3

µ.
From the first term in Eq. (1), the spin Si

a is much
distorted from the anti-ferromagnet state within the
length of ∼ Rc around the hole. Furthermore, the
spin order will be distorted in the long range by
the massless U(1) gauge field A3

µ [6]. When S(i),
S(j) and S(k) are spins on triangle sites i, j and k
within ∼ πR2

c

(̃
i
)

around the hole at the site ĩ, the
chiral spin liquid parameter q̃i is introduced as fol-

lows [7], qĩ ≡
∑

(ijk)∈πR2
c(ĩ)

S(i) · (S(j) × S(k)), where

(ijk) are local triplet sites of spins. Because the
hole state trapped into the hedgehog-like soliton is
thought as that the instanton-like fluctuation [8] is
stabilized by the hole [9,10], we assume that q̃i is ap-
proximately proportional to the topological number
of the instanton ∼ c/4π

∫
dxdy(S · ∂xS × ∂yS) ∼

c/2π · ∫ dSµν(∂µA
3
ν − ∂νA

3
µ) [11]. When the carrier is

located at the position r̃i and |r − r̃i| � 1/|m1| ∼ Rc

is assumed, the gauge field A3
µ(r, rĩ) at the position

r is represented as A3
µ(r, rĩ) ∝ qĩ/|r − rĩ|. Thus,

we can introduce the interaction between the chiral
spin-disordered hedgehog-like solitons at positions
rĩ and rj̃ as Vĩ·̃j ∝ (qĩ · qĩ)/|rĩ − rj̃ |. For the mean-
field approximate, it is assumed that Ṽi·̃j describes N
hedgehog-like soliton’s interaction, which mediated by
the massless U(1) A3

µ fields in pairs (̃i, j̃) via infinite-
range Gaussian-random interaction for simplifying
discussion [11],
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Now we can get the spin-glass-like behavior from the
analogy of the Sherrington-Kirkpatrik (SK) formula
by using the replica method. We can define the order
parameter Ḡ ≡

∫ 1

0
dxQ(x), where Q(x) is the Parisi

order parameter and is derived from Qαβ = 〈qα
ĩ
qβ

ĩ
〉,

in Parisi’s theoretical formula [12]. In the tempera-

ture region below Tf =
(
N
〈
Vĩj̃

2
〉)1/2

/kB, we got

the phase of the order parameter Ḡ 	= 0 and 〈qα
ĩ
〉 =

0, which corresponds to the chiral spin-glass phase,
within the mean-field approximate. From the avarage

of
∣∣rĩ − rj̃

∣∣2 ∝ 1/Psh and N ∝ Psh, we can get ap-

proximately the relation, Tf =
(
N
〈
Vĩj̃

2
〉)1/2

/kB ∝
Psh/kB . Where Psh is the planar hole content. This
relation is consistent with the recent experiment [2].
It is known from the present theory that there exists

the spin chirality q̃i =
∑

(ijk)∈πR2
c(ĩ)

S(i) · (S(j) × S(k))

around the hole at the position ĩ in the chiral spin
glass pahse. This spin chirality q̃i means that spin-
components longitudinal to c-axis are induced strongly
around the hole. These induced magnetic components,
which are longitudinal to c-axis, around the hole might
correspond to ones observed by Mook et. al. [5].
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