

The fluctuation of a local magnetic field in underdoped cuprates

I. Kanazawa^{a,1}

^a Department of Physics, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan

Abstract

We have proposed the relationship between the spin freezing temperature and the planar hole content ($P_{sh} < \sim 0.02$) in underdoped cuprates from the chiral-like spin-glass mechanism.

Key words: high-Tc cuprates; spin glass; spin chirality

1. Introduction

Nuclear magnetic-nuclear quadrupole resonance [1] and muon spin resonance experiments [2] show that there exists the phenomenon, generally interpreted in terms of "glassy spin-freezing", in underdoped cuprates. Niedermayer *et. al.* [2] found a very interesting result that the spin freezing temperature T_f exhibits the same linear dependence on the planar hole content, P_{sh} , for Y. Ca-123 and La. Sr-214 in lightly doped systems. ($P_{sh} < \sim 0.02$). This transition has been ascribed to a freezing of the spins of the doped holes into a spin-glass state which is superimposed on the preexisting 3D AF long range order of the Cu^{2+} spins [2]. The present author has proposed the chiral-like spin-glass mechanism in underdoped high-Tc cuprates in the mean-field approximate using the replica method [3,4]. Recently Mook *et. al.* [5] by means of inelastic neutron scattering measurements in underdoped high-Tc cuprates (YBCO) detected longitudinal with respect to c-axis magnetic moment of unknown origin. In the present study, we will present the relationship between the spin freezing temperature and the planar hole content ($P_{sh} < \sim 0.02$) and an origin of the magnetic moments longitudinal to c-axis from chiral-like spin-glass mechanism.

2. A model system

Though the symmetry breaking $\langle 0|\phi_a|0\rangle = \langle 0, 0, \mu(k_F) \rangle$, we can obtain the effective Lagrangian density, \mathcal{L}_{eff} , at small doping of holes [3,4]. The value, $\mu(k_F) = \langle 0|\phi_3|0\rangle$, of the symmetry breaking depends strongly on an angle of Fermi momentum, k_F , on the Fermi surface. That is, the value $\mu(k_F)$, is much correlated to the gap energy of the high energy pseudogap. Thus, the value, $\mu(k_F)$, is higher around the hot spot.

$$\begin{aligned} \mathcal{L}_{\text{eff}} = & \frac{1}{2} \left(\partial_i S_c^j - g_1 \varepsilon_{abc} \varepsilon_{jik} A_i^b S_a^k \right)^2 \\ & + \psi^+ (i\partial_0 - g_2 T_a A_0^a) \psi \\ & - \frac{1}{2m} \psi^+ (i\nabla - g_2 T_a A_{(\mu \neq 0)}^a)^2 \psi \\ & - \frac{1}{4} \left(\partial_\nu A_\mu^a - \partial_\mu A_\nu^a + g_3 \varepsilon_{abc} A_\mu^b A_\nu^c \right)^2 \\ & + \frac{1}{2} \left(\partial_\mu \phi_a - g_4 \varepsilon_{abc} A_\mu^b \phi_c \right)^2 \\ & + \frac{1}{2} m_1^2 \left[(A_\mu^1)^2 + (A_\mu^2)^2 \right] \\ & + m_1 \left[A_\mu^1 \partial_\mu \phi_2 - A_\mu^2 \partial_\mu \phi_1 \right] \\ & + g_4 m_1 \left\{ \phi_3 \left[(A_\mu^1)^2 + (A_\mu^2)^2 \right] \right. \\ & \left. - A_\mu^3 \left[\phi_1 A_\mu^1 + \phi_2 A_\mu^2 \right] \right\} - \frac{m_2^2}{2} (\phi_3)^2 \\ & - \frac{m_2^2 g_4}{2m_1} \phi_3 (\phi_a)^2 - \frac{m_2^2 g_4^2}{8m_1^2} (\phi_a \phi_a)^2, \end{aligned} \quad (1)$$

¹ E-mail:kanazawa@u-gakugei.ac.jp

where S_a^i is the spin parameter, ψ is Fermi fields of the hole, $m_1 = \mu \cdot g_4$, $m_2 = 2\sqrt{2}\lambda \cdot \mu$. The effective Lagrangian describes two massive vector field A_μ^1 and A_μ^2 , and one massless U(1) gauge field A_μ^3 . From the first term in Eq. (1), the spin S_a^i is much distorted from the anti-ferromagnet state within the length of $\sim R_c$ around the hole. Furthermore, the spin order will be distorted in the long range by the massless U(1) gauge field A_μ^3 [6]. When $S(i)$, $S(j)$ and $S(k)$ are spins on triangle sites i , j and k within $\sim \pi R_c^2(\tilde{i})$ around the hole at the site \tilde{i} , the chiral spin liquid parameter $q_{\tilde{i}}$ is introduced as follows [7], $q_{\tilde{i}} \equiv \sum_{(ijk) \in \pi R_c^2(\tilde{i})} S(i) \cdot (S(j) \times S(k))$, where

(ijk) are local triplet sites of spins. Because the hole state trapped into the hedgehog-like soliton is thought as that the instanton-like fluctuation [8] is stabilized by the hole [9,10], we assume that $q_{\tilde{i}}$ is approximately proportional to the topological number of the instanton $\sim c/4\pi \int dx dy (S \cdot \partial_x S \times \partial_y S) \sim c/2\pi \cdot \int dS_{\mu\nu} (\partial_\mu A_\nu^3 - \partial_\nu A_\mu^3)$ [11]. When the carrier is located at the position $r_{\tilde{i}}$ and $|r - r_{\tilde{i}}| \gg 1/|m_1| \sim R_c$ is assumed, the gauge field $A_\mu^3(r, r_{\tilde{i}})$ at the position r is represented as $A_\mu^3(r, r_{\tilde{i}}) \propto q_{\tilde{i}}/|r - r_{\tilde{i}}|$. Thus, we can introduce the interaction between the chiral spin-disordered hedgehog-like solitons at positions $r_{\tilde{i}}$ and $r_{\tilde{j}}$ as $V_{\tilde{i}, \tilde{j}} \propto (q_{\tilde{i}} \cdot q_{\tilde{j}})/|r_{\tilde{i}} - r_{\tilde{j}}|$. For the mean-field approximate, it is assumed that $V_{\tilde{i}, \tilde{j}}$ describes N hedgehog-like soliton's interaction, which mediated by the massless U(1) A_μ^3 fields in pairs (\tilde{i}, \tilde{j}) via infinite-range Gaussian-random interaction for simplifying discussion [11],

$$P(V_{\tilde{i}, \tilde{j}}) = \frac{1}{(2\pi \langle V_{\tilde{i}, \tilde{j}}^2 \rangle)^{1/2}} \exp \left(\frac{-V_{\tilde{i}, \tilde{j}}^2}{2\langle V_{\tilde{i}, \tilde{j}}^2 \rangle} \right) \quad (2)$$

Now we can get the spin-glass-like behavior from the analogy of the Sherrington-Kirkpatrick (SK) formula by using the replica method. We can define the order parameter $\bar{G} \equiv \int_0^1 dx Q(x)$, where $Q(x)$ is the Parisi order parameter and is derived from $Q^{\alpha\beta} = \langle q_i^\alpha q_{\tilde{i}}^\beta \rangle$, in Parisi's theoretical formula [12]. In the temperature region below $T_f = (N \langle V_{\tilde{i}, \tilde{j}}^2 \rangle)^{1/2}/k_B$, we got the phase of the order parameter $\bar{G} \neq 0$ and $\langle q_{\tilde{i}}^\alpha \rangle = 0$, which corresponds to the chiral spin-glass phase, within the mean-field approximate. From the avarage of $|r_{\tilde{i}} - r_{\tilde{j}}|^2 \propto 1/P_{sh}$ and $N \propto P_{sh}$, we can get approximately the relation, $T_f = (N \langle V_{\tilde{i}, \tilde{j}}^2 \rangle)^{1/2}/k_B \propto P_{sh}/k_B$. Where P_{sh} is the planar hole content. This relation is consistent with the recent experiment [2]. It is known from the present theory that there exists the spin chirality $q_{\tilde{i}} = \sum_{(ijk) \in \pi R_c^2(\tilde{i})} S(i) \cdot (S(j) \times S(k))$

around the hole at the position \tilde{i} in the chiral spin glass pahse. This spin chirality $q_{\tilde{i}}$ means that spin-components longitudinal to c-axis are induced strongly around the hole. These induced magnetic components, which are longitudinal to c-axis, around the hole might correspond to ones observed by Mook *et. al.* [5].

References

- [1] A. Rigamonti, F. Borsa, and P. Carretta, Rev. Prog. Phys. **61** (1998) 1367.
- [2] Ch. Niedermayer, C. Bernhard, T. Blasius, A. Moodenbaugh, and J. I. Budnik, Phys. Rev. Lett. **80** (1998) 3843.
- [3] I. Kanazawa, Physica B**284/288** (2000) 409.
- [4] I. Kanazawa, Physica C**357** (2001) 149.
- [5] H. A. Mook, P. Dai, and F. Dogan, Phys. Rev. B**64** (2001) 012502.
- [6] I. Kanazawa, Superlattice Microt. **21** (1997) 279.
- [7] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B**39** (1989) 11413.
- [8] F. D. M. Haldane, Phys. Rev. Lett. **61** (1988) 1029.
- [9] R. J. Gooding, Phys. Rev. Lett. **66** (1991) 2266.
- [10] P. Wiegmann, Prog. Theor. Phys. Suppl. **107** (1992) 243.
- [11] I. Kanazawa, Prog. Theor. Phys. Suppl. **126** (1997) 393.
- [12] G. Parisi, Phys. Lett. A**73** (1979) 203.