

Competition between Kondo effect and RKKY interaction modified by Cu concentration in $\text{Ce}(\text{Pd}_{1-x}\text{Cu}_x)_2\text{Al}_3$

Peijie Sun ^{a,1}, Yosikazu Isikawa ^a, Qingfeng Lu ^b, Tomohiko Kuwai ^a, Dexuan Huo ^a, Junji Sakurai ^a

^aDepartment of Physics, Toyama University, Toyama 930-8555, Japan

^bDepartment of Physics, Henan Normal University, Henan 453002, China

Abstract

It was found that introducing Cu into Pd-site of CePd_2Al_3 drives down the antiferromagnetic temperature and brings about a ferromagnetic-like state, then further introduction leads to a revival of the antiferromagnetic state again. The nature of the conduction electron band changed by Cu substitution plays an essential role in such $\text{Ce}(\text{Pd}_{1-x}\text{Cu}_x)_2\text{Al}_3$ system. Focusing on the Cu-poor regime of $x \leq 0.1$, we found from specific heat results that T_N decreases rapidly with growing Cu concentration, while Sommerfeld coefficient γ shows an increase tendency. These behaviors do not follow the Doniach's phase diagram and are contrasted with the previous studies on $\text{Ce}(\text{Pd}_{1-x}\text{Ni}_x)_2\text{Al}_3$ system.

Key words: Kondo effect; RKKY interaction; $\text{Ce}(\text{Pd}_{1-x}\text{Cu}_x)_2\text{Al}_3$; specific heat

As a typical antiferromagnetic Kondo compound, CePd_2Al_3 , which exhibits antiferromagnetic ordering at $T_N = 2.8$ K and Sommerfeld coefficient $\gamma = 380$ mJ/mol K² [1], has been investigated by a variety of experimental techniques so far. The magnetic moments in CePd_2Al_3 have a value about $0.38 \mu_B$ [2], and the entropy released up to T_N is no more than 40 % of $R \ln 2$ from the doublet ground state [1], indicating a heavy competition between magnetic ordering and Kondo effect. As recently reported, T_N is decreased and the Kondo temperature T_K is enhanced by introducing Ni to Pd-site [3–5], and the Doniach's phase diagram [6] is reproduced in this case. Similar behaviors were also observed from the experimental results under pressure [7]. We know now, decreasing of unit-cell volume provides a rather good explanation to the evolution of both T_N and T_K in the above two cases, in which, hybridization between conduction electrons and localized 4f electrons is strengthened.

¹ Corresponding author. E-mail: d023014@ems.toyama-u.ac.jp

We investigated a similar system $\text{Ce}(\text{Pd}_{1-x}\text{Cu}_x)_2\text{Al}_3$ in this work. Introducing Cu provides an extra d electron to the conduction electron band in comparison to Pd/Ni. Continuous substitution of Pd by Cu leads to a complicated magnetic phase diagram as shown in Fig. 1. Primarily, T_N decreases abruptly with substitution in the Cu-poor regime of $x < 0.1$, passing a concentration region without long range magnetic order, a ferromagnetic-like state is developed around $x = 0.1 \sim 0.4$. The antiferromagnetic state is established again at $x = 0.5$, then T_N goes up with x . A more complete description of the magnetic and transport properties for this system will be published elsewhere [8]. However, here we will pay our attentions on the specific heat measurements of $x \leq 0.1$.

Polycrystalline samples employed were prepared by arc-melting under an argon atmosphere and were subsequently annealed at 900 °C for 100 ~ 150 hours. The crystal structure was confirmed to be a hexagonal PrNi_2Al_3 -type one by analyzing the powder x-ray diffraction patterns. The specific measurements were

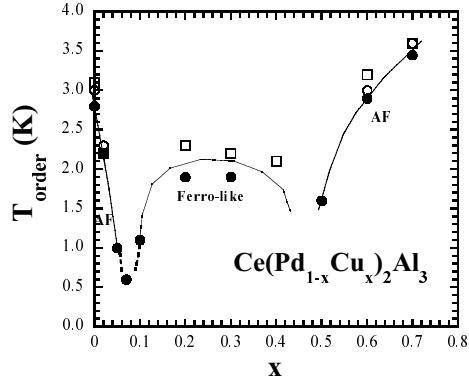


Fig. 1. Magnetic phase diagram of $\text{Ce}(\text{Pd}_{1-x}\text{Cu}_x)_2\text{Al}_3$ system. Closed circles, open circles, and squares denote magnetic transition temperatures defined by peaks in specific heat, magnetic susceptibility and electrical resistivity, respectively [8].

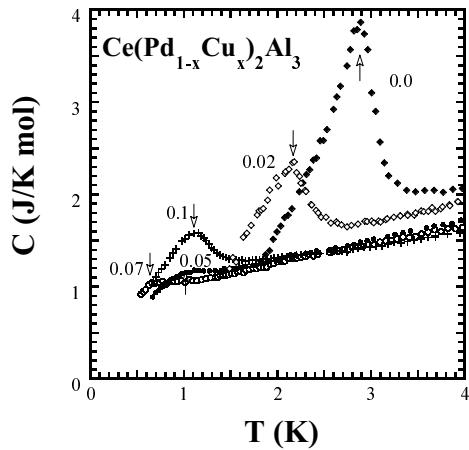


Fig. 2. Specific heat as a function of temperature. The arrows indicate the phase transitions.

performed in an adiabatic method using a ^4He cryostat or a ^3He - ^4He dilution refrigerator.

Fig. 2 shows the specific heat of $\text{Ce}(\text{Pd}_{1-x}\text{Cu}_x)_2\text{Al}_3$ as a function of temperature, for $x = 0.0, 0.02, 0.05, 0.07$ and 0.1 . Introducing of slight amount of Cu into Pd-site lowers the antiferromagnetic ordering temperature rapidly. A well defined peak regarded as T_N was observed at 2.2 K for $x = 0.02$, however, the peak for $x = 0.05$ and 0.07 drops down to 1.0 K and 0.6 K respectively, and is somewhat broad and tiny. Nevertheless, for $x = 0.1$, a well defined peak with considerably large intensity was observed. This indicates a revival of magnetic transition as a ferromagnetic-like one, if the results of magnetization measurement are considered [8]. It should be noted that, for the concentration in the crossover of magnetic types as $x = 0.05$ and 0.07 , a complex magnetic state, e.g. spin glass, rather than a well arrayed magnetic ordering maybe realize and further investigation is required.

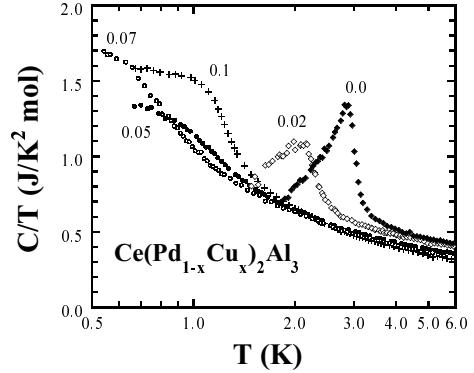


Fig. 3. Specific heat divided by temperature as a function of temperature on a log T scale.

C/T curves presented in Fig. 3 show that C/T value starts increasing with decreasing temperature from at least 6 K for all concentrations. Peak corresponding to T_N was observed for $x = 0.0$ and 0.02 , while sharp upturn over a value of 1 J/mol K^2 was observed for $x = 0.05, 0.07$ and 0.1 . Moreover, we notice that C/T continues to increase even below the temperature of phase transition for $x = 0.05, 0.07$, and 0.1 . This is attributed to the competition between Kondo effect and RKKY interaction, since the former promotes and the latter suppresses the spin fluctuations, which enhance the γ value. In fact, a decrease tendency of T_K with introducing Cu was inferred from some facts, e.g. the entropy released up to T_N for $x = 0.6$ and 0.7 reaches to about 80% of $R \ln 2$ [8]. Obviously, such a tendency is also supported by the specific heat of Cu-poor regime, and is contrary to the case of $\text{Ce}(\text{Pd}_{1-x}\text{Ni}_x)_2\text{Al}_3$, although a decrease of unit-cell volume was observed in both systems with introducing Ni/Cu and a similar volume effect is expected for the present case.

In summary, the specific heat data of $x \leq 0.1$ for $\text{Ce}(\text{Pd}_{1-x}\text{Cu}_x)_2\text{Al}_3$ shows that, introducing Cu into Pd-site of CePd_2Al_3 modifies Kondo effect and RKKY interaction sensitively, and the nature of conduction band changed by the extra d electron overwhelms the volume effect and then dominates in the physical properties. The results do not follow the Doniach's diagram.

References

- [1] H. Kitazawa et al., J. Phys. Soc. Jpn. **61** (1992) 1461.
- [2] S. Mitsuda et al., J. Phys. Soc. Jpn. **61** (1992) 4667.
- [3] K. Fujiwara et al., Physica B **206 & 207** (1995) 228.
- [4] A. Galatanu et al., Physica B **281 & 282** (2000) 83.
- [5] Y. Isikawa et al., Physica B **312 & 313** (2002) 259.
- [6] S. Doniach, Physica B **91** (1977) 231.
- [7] F. Nolting et al., Physica B **199 & 200** (1994) 614.
- [8] P. Sun et al., to be published.