

NMR study of magnetic properties in SmRu₄P₁₂

Kenji Fujiwara^a, Katsunori Ishihara^{a,1}, Kiyotaka Miyoshi^a, Jun Takeuchi^a,
Chihiro Sekine^b, Ichimin Shirotan^b

^aDepartment of Materials Science, Shimane University, Matsue 690-8504, Japan

^bMuroran Institute of Technology, 27-1, Mizumoto, Muroran 050-8585, Japan

Abstract

³¹P-NMR spectra and nuclear spin-lattice relaxation time T_1 have been measured in the temperature range between 4.2 and 300 K. NMR spectrum becomes suddenly broad below metal-insulator transition temperature ($T_{MI}=16.2$ K), suggesting that SmRu₄P₁₂ shows magnetic phase transition just below T_{MI} . Relaxation rate $1/T_1$ obeys the exponential relation ($\propto \exp[-\Delta E/k_B T]$) with $\Delta E/k_B = 47$ K below T_N . The NMR results around T_{MI} are discussed.

Key words: SmRu₄P₁₂; NMR; Metal-insulator transition; Magnetic ordering

The LnRu₄P₁₂ compounds (Ln = Lanthanide element) with the filled skutterudite structure have various physical properties. PrRu₄P₁₂ and SmRu₄P₁₂ show metal-insulator (MI) transition at 61.5 K [1-3] and 16.2 K [4], respectively. In the powder X-ray diffraction experiment, PrRu₄P₁₂ exhibits no distinct change of the pattern, indicating that cubic symmetry hold below T_{MI} . The MI transition has no relation to magnetic phase transition, because magnetic susceptibility shows no anomaly at T_{MI} . Recently, superlattice structure below T_{MI} was found using the electron diffraction technique. [5,6] This structural phase transition provides some scenario of origin of MI transition (e.g.; charge density wave transition or antiferro-quadrupolar ordering) in PrRu₄P₁₂.

On the other hand, the electrical resistivity, magnetic susceptibility and specific heat studies reveals that SmRu₄P₁₂ shows an antiferromagnetic transition and a metal-insulator transition at the same temperature (16.2 K). [4] Therefore, the mechanism of the MI transition in SmRu₄P₁₂ seems to be different from that in PrRu₄P₁₂. In this paper, we report NMR studies for

³¹P nuclei (spin 1/2) in SmRu₄P₁₂ around the metal-insulator transition temperature.

The polycrystalline samples, SmRu₄P₁₂ and LaRu₄P₁₂, were prepared at high temperatures of 1100 °C and high pressures of 4 GPa using a wedge-type cubic-anvil high pressure apparatus. The detail of the preparation is published elsewhere. The sample was crushed into powder for measurements of ³¹P-NMR. NMR measurement was preformed with a conventional spin-echo method. LaRu₄P₁₂ without 4f electrons was used as reference.

³¹P-NMR spectrum of SmRu₄P₁₂ were measured at the frequency of 17.0000 MHz in the temperature range of 4.2-300 K. Figure 1 shows T -dependence of NMR spectrum below 17 K. In the metallic state above T_{MI} , NMR spectrum is very sharp with the full width of half maximum $W_{1/2} \sim 5$ Oe. The line shape is symmetric and Knight shift is isotropic, as expected from the cubic symmetry. Below T_{MI} , the spectrum change suddenly into a broad and triangular-like pattern, indicating that SmRu₄P₁₂ shows magnetically ordered state below 16.3 K ($\sim T_{MI}$). Since the triangular pattern is different from the rectangular one expected in the normal AF ordered state, the spin structure seems to be complicated, such as the incommensurate ordering.

¹ Present address: Materials Research Laboratory, FUJIKAWA CO. LTD., Tsukuba 305-0856, Japan

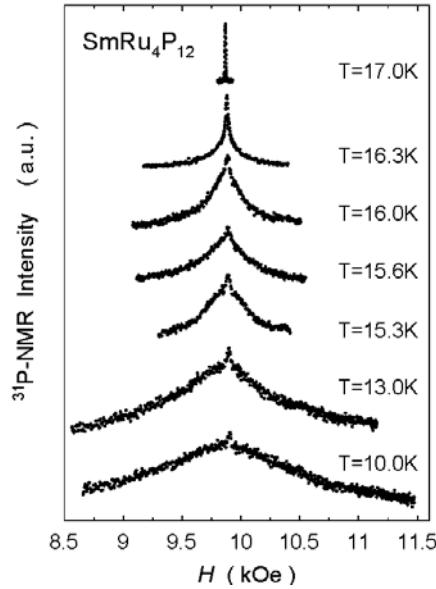


Fig. 1. Temperature dependence of the ^{31}P -NMR spectrum in $\text{SmRu}_4\text{P}_{12}$ below 17 K.

The Knight shift, K was measured for ^{31}P nuclei in the metallic state. K is expressed by the linear function ($K = A_{hf}\chi$) of the observed magnetic susceptibility, χ , where A_{hf} is a hyperfine coupling constant. $A_{hf} = 2.41$ kOe/ μ_B is calculated from the slope of $K-\chi$ plot. It is noted that A_{hf} of $\text{SmRu}_4\text{P}_{12}$ is about nine times as large as that (0.28 kOe/ μ_B) of $\text{PrRu}_4\text{P}_{12}$. [7]

Nuclear spin-lattice relaxation rate $1/T_1$ of $\text{SmRu}_4\text{P}_{12}$ was measured at the main peak in the T -range of 4.2-300 K. Figure 2 shows T -dependence of $1/T_1$ of $\text{SmRu}_4\text{P}_{12}$ and $\text{LaRu}_4\text{P}_{12}$, respectively. In the metallic state, $1/T_1$ of $\text{SmRu}_4\text{P}_{12}$ is almost independent of temperature and the magnitude of $1/T_1$ is ten times as large as that of $\text{LaRu}_4\text{P}_{12}$ without 4f-electron spins. Therefore 4f-spin fluctuation contributes to the nuclear relaxation drastically. Taking account for the magnetic susceptibility of the Van Vleck Frank Sm^{3+} above 20 K, 4f-spins are localized at the Sm ions. [4]

On the other hand, below T_{MI} (T_N), $1/T_1$ decreases rapidly without the enhancement around T_N due to the critical slowing down of 4f-moments. As seen in an insert, $1/T_1$ varies approximately exponentially with inverse temperature: $1/T_1 \propto \exp[-\Delta E/k_B T]$. Here ΔE is the activation energy and k_B is the Boltzmann's constant. The $\Delta E/k_B$ is estimated to be 47 K by the least square fit (solid line in the insert). This energy is considered to correspond to some magnon gap energy.

In conclusion, in $\text{SmRu}_4\text{P}_{12}$, magnetically long-range order below T_{MI} (T_N) was confirmed from the NMR experiment under the magnetic field of about 10 kOe. The relaxation behavior shows that $\text{SmRu}_4\text{P}_{12}$

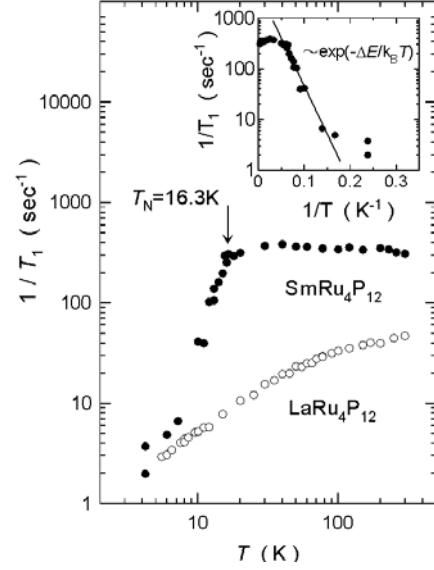


Fig. 2. Temperature dependence of $1/T_1$ in $\text{SmRu}_4\text{P}_{12}$. An Insert shows $1/T_1$ as a function of inverse temperature. The solid line is best fitted to the function of $\exp[-\Delta E/k_B T]$.

has localized 4f-character. The activated behavior of $1/T_1$ was observed below T_N and the energy gap of spin excitation was estimated to be 47 K. The change of 4f-electron state below T_{MI} could not be found due to the remarkable increase of the NMR line-width.

This research was partially supported by a Grant-in-Aid for Scientific Research from Shimane Industrial Promotion Foundation.

References

- [1] G.P.Meissner, M.S. Torikachvili, K.N. Yang, M.B. Maple and R.P.Guertin, *J. Appl. Phys.* **57** (1985) 3073.
- [2] I. Shirotani, T. Adachi, K. Tachi, S. Todo, K. Nozawa, T. Yagi and M. Kinoshita, *J. Phys. Chem. Solids* **57** (1996) 211.
- [3] C. Sekine, T. Uchiumi, I. Shirotani and T. Yagi, *Phys. Rev. Lett.* **79** (1997) 3218.
- [4] C. Sekine, T. Uchiumi, I. Shirotani and T. Yagi, *AIRAPT-17* (2000) 826-829.
- [5] C.H.Lee, H. Matsuhata, A. Yamamoto, T. Ohta, H. Takazawa, K. Ueno, C. Sekine, I. Shirotani, T. Hirayama and Y. Ikuhara, *J. Phys.: Condens. Matter* **13** (2001) L45.
- [6] H. Sugawara Y. Abe, H. Sato, M. hedo, R. Settai, Y. Onuki and H. Harima, *J. Phys. Soc. Jpn.* **69** (2000) 2938.
- [7] K. Fujiwara, K. Ishihara, J. Takeuchi, C. Sekine and I. Shirotani, unpublished.