

Annealing effect of the irreversibility fields in (Cu,C)Ba₂Ca_{n-1}Cu_nO_y (n = 3 and 4)

M. Hirai ^{a,b,e,1}, A. Iyo ^{b,e}, H. Kito ^{b,e}, A. Crisan ^{b,c,e}, K. Tokiwa ^{d,e}, T. Watanabe ^{d,e},
J. Arai ^a, Y. Tanaka ^{b,d,e}

^aDept. of Physics, Faculty of Science and Technology, Tokyo Univ. of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan

^bNanoelectronics Research Institute (AIST), Tsukuba, Ibaraki, 305-8568, Japan

^cNational Institute for Materials Physics, P. O. Box MG-7, Bucharest, Romania

^dDept. of Applied Electronics, Faculty of Industrial Science and Technology, Tokyo Univ. of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan

^eCore Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST)

Abstract

Annealing effect of the irreversibility fields (H_{irr}) in (Cu,C)Ba₂Ca₂Cu₃O_y ((Cu,C)-1223) and (Cu,C)Ba₂Ca₃Cu₄O_y ((Cu,C)-1234) have been investigated. The samples prepared under high pressure were post-annealed in nitrogen gas in the temperature range of 400 - 500 °C. H_{irr} of (Cu,C)-1234 was improved after annealing at 450 °C while T_c remained almost constant. This suggests that carrier density of 5-coordinated CuO₂ planes or conductivity of charge reservoir layers is changed by annealing while keeping that of 4-coordinated CuO₂ planes almost constant. Both samples show $H_{irr} \simeq 4$ T at 90 K by the post-annealing, which is quite attractive for practical application.

Key words: (Cu,C)-1223; (Cu,C)-1234; annealing effect; irreversibility field; high-pressure synthesis;

1. Introduction

MBa₂Cu₃O_y (M = Y and Rare earth), which is regarded as a member (n = 2) of Cu-12(n-1)n system [1], is known to have high H_{irr} due to low anisotropy. Its research for application such as tape and bulk is developed well. (Cu,C)Ba₂Ca_{n-1}Cu_nO_y (n = 3 and 4) [2], which is also a member of Cu-12(n-1)n system, can be considered to be a material which combines high T_c ($\simeq 120$ K) and low anisotropy. Therefore, the possibility of application at the higher temperature (≥ 77 K) is expected.

Previously, we studied annealing effect of (Cu,C)-1223 and demonstrated that (Cu,C)-1223 has a H_{irr} of 9.4 T at 77 K [3]. In this paper, we will show annealing effect of (Cu,C)-1234 as well as of (Cu,C)-1223. (Cu,C)-1223 and 1234 have crystallography inequivalent CuO₂

planes. The NMR study showed that charge distribution among the CuO₂ planes is quite inhomogeneous so that in the case of (Cu,C)-1234 nearly optimal doped four-coordinated CuO₂ planes sustain an overall T_c (≥ 117 K) while heavily overdoped five-coordinated ones seem to have a lower T_c (≥ 60 K) [4].

We expected that H_{irr} would be increased if the carrier distribution and concentration could be controlled by annealing.

2. Experimental

Precursors for (Cu,C)-1223 and 1234 having the nominal compositions of Ba₂Ca_{1.6}Cu_{3.5}O_yC_x and Ba₂Ca_{2.7}Cu_{4.6}O_yC_x were prepared from a mixture of BaCO₃, CaCO₃ and CuO powders at 880 °C for 24 hours in flowing oxygen gas with one in-

¹ E-mail:manabu-hirai@aist.go.jp

termediate grinding. The residual carbon concentration x in both the precursors was estimated to be about 0.1 by infrared absorption method. One mol of the precursors were mixed with 0.4 and 0.3 mol of CaCO_3 and 0.52 and 0.4 mol of AgO (as an oxidizing agent) for sample preparation of $n = 3$ and 4, respectively. The mixtures with nominal compositions of $(\text{Cu}_{0.5}\text{C}_{0.5})\text{Ba}_2\text{Ca}_2\text{Cu}_3\text{O}_y$ and $(\text{Cu}_{0.6}\text{C}_{0.4})\text{Ba}_2\text{Ca}_3\text{Cu}_4\text{O}_y$ were sealed in gold capsules and heated at 960 °C for 4 hours and at 980 °C for 2 hours under 3.5 GPa, respectively, by means of a cubic-anvil-type apparatus (RIKEN CAP-07).

The samples were ground into powders and post-annealed in a nitrogen gas flow in the temperature range of 400 - 500 °C for 12 hours. Magnetic hysteresis loops were measured with a SQUID magnetometer (MPMS-XL Quantum Design) up to 7 T. Critical current density (J_c) was calculated by using Bean's critical state model (grain size of 7.5 μm was used). H_{irr} was estimated from the field dependence of J_c ($J_c = 1000 \text{ A/cm}^2$ was used as a criterion).

3. Results and discussion

The X-ray diffraction patterns for (Cu,C)-1223 and 1234 showed nearly single phase. EDX analysis revealed that there is no Ag in the grain.

Figure 1(a) shows the temperature dependence of H_{irr} for (Cu,C)-1223. The T_c and irreversibility line are increased with the annealing temperature. In the previous report [3], we demonstrated that there exists an optimal annealing temperature (carrier concentration) to enhance H_{irr} lines. The sample annealed at 500 °C ($T_c = 118 \text{ K}$) that is slightly overdoped state shows the H_{irr} of about 3.9 at 90 K and 6.2 T at 85 K. The H_{irr} at 77 K estimated by extrapolation is 9.8 T. These values are higher than the previously reported ones [3] because the carrier concentration would be much more optimized.

Figure 1(b) shows the temperature dependence of H_{irr} for (Cu,C)-1234. Unlike (Cu,C)-1223, the T_c is almost independent of annealing temperature (only 1 K decreased). The H_{irr} line, however, once decreased by annealing at 400 °C and increased by annealing at 450 °C suggesting that there exists an optimal annealing temperature to enhance H_{irr} lines like (Cu,C)-1223. The carrier concentration of the four-coordinated CuO_2 planes must be almost constant because T_c is not affected by annealing. The H_{irr} is known to depend on conductivity of charge reservoir layers as well as carrier concentration. The change of H_{irr} in (Cu,C)-1234 would result from that of carrier concentration of the five-coordinated CuO_2 planes and/or the charge reservoir layers ($\text{BaO}-(\text{Cu,C})\text{O}_y-\text{BaO}$). Both samples

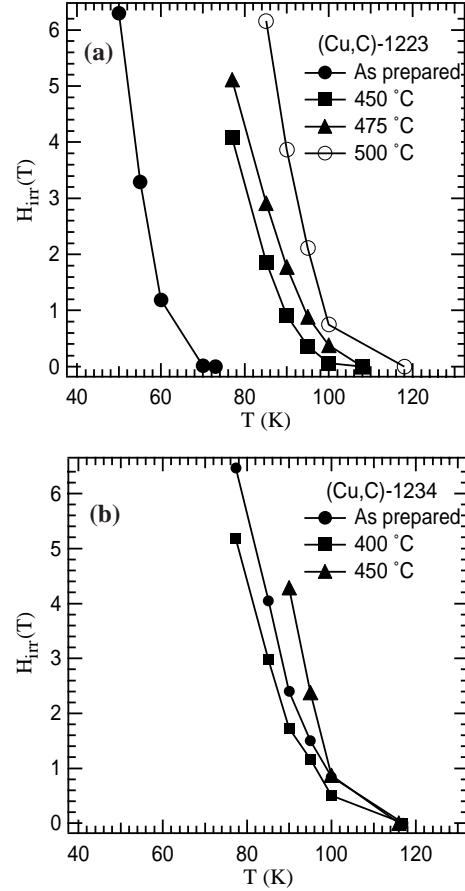


Fig. 1. Temperature dependence of irreversibility fields for (Cu,C)-1223 (a) and 1234 (b) as a function of annealing temperature.

of (Cu,C)-1223 and 1234 show a H_{irr} of about 4 T at 90 K which $\text{YBa}_2\text{Cu}_3\text{O}_y$ ($T_c \sim 92 \text{ K}$) never achieved.

References

- [1] H.Ihara, K.Tokiwa, H.Ozawa, M.Hirabayashi, A.Negishi, H.Matsuhata, Y.S.Song, Jap. J. Appl. Phys. **33** (1994) L503.
- [2] T.Kawashima, Y.Matsui, E.Takayama-Muromachi, Physica C **224** (1994) 69.
- [3] A.Iyo, Y.Tanaka, N.Terada, M.Tokumoto, H.Ihara, Physica B **284-288** (2000) 867.
- [4] H.Kotegawa, Y.Tokunaga, K.Ishida, G.Q.Zheng, Y.Kitaoka, K.Asayama, H.Kito, A.Iyo, H.Ihara, K.Tanaka, K.Tokiwa, T.Watanabe, J. Phys. Chem. Solids **62** (2001) 171-175.