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Michael Töpler a, Volker Dohm a

aInstitut für Theoretische Physik, Technische Hochschule Aachen, D-52056 Aachen, Germany

Abstract

We present results of a renormalization-group calculation of the thermal conductivity of confined 4He in a L2 ×∞
geometry above and at Tλ within model F with Dirichlet boundary conditions for the order parameter. We assume
a heat flow parallel to the boundaries which implies Neumann boundary conditions for the entropy density. No
adjustable parameters other than those known from bulk theory are used. Our theoretical results are compared
with experimental data by Kahn and Ahlers.
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1. Introduction

The theory of finite-size effects near phase transi-
tions is an area of active research. Well suited for a
comparison between theory and experiment is the su-
perfluid transition of 4He [1]. So far, however, primarily
static properties have been investigated. Very little is
known about finite size effects on dynamic quantities.
In particular no theoretical prediction exists for the va-
lidity of dynamic finite-size scaling along the lambda
line of 4He. Here we present some results of the first
renormalization-group calculation of finite-size effects
on the thermal conductivity of 4He above and at Tλ and
compare our results with experimental data by Kahn
and Ahlers [2].

2. Theory

Our calculations are based on model F [3] which is
defined by

ψ̇0 = −2Γ0
δH

δψ∗
0

+ ig0ψ0
δH

δm0
+ Θψ , (1)

ṁ0 = λ0∇2 δH

δm0
+ g0∇j0s +W0 + Θm , (2)
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+
1

2
χ−1

0 m2
0 + γ0m0|ψ0|2) , (3)

where

j0s(r, t) ≡ Im(ψ∗
0(r, t)∇ψ0(r, t)) , (4)

r0 = r0c + a0t̃ , t̃ = (T − Tλ)/Tλ . (5)

We consider a rectangular L2 × L̃ box geometry and
assume a stationary heat current Q in the z direction
which is generated by a heat source in the bottom plane
z = −L̃/2 and absorbed by a sink in the top plane

z = L̃/2,

W0(r) = Q[δ(z + L̃/2) − δ(z − L̃/2)] . (6)

We impose Dirichlet boundary conditions for the or-
der parameter (ψ0 = 0) and Neumann boundary con-
ditions for the entropy density m0 (vanishing spatial
derivatives perpendicular to the sidewalls). Eventually

we let L̃ → ∞ and define the superfluid current j =
lim

L̃→∞ < j0s > in the stationary state. We are inter-
ested in the finite-size effect on the thermal conductiv-
ity
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where jz is the z component of j. We have calculated
λT (t̃, L) analytically for t̃ ≥ 0 up to one-loop order em-
ploying the minimal renormalization approach at fixed
dimension d = 3 [4] and using the effective parameters
known from bulk theory [5]. We neglect possible non-
scaling contributions due to cutoff effects and van der
Waals forces [6].

3. Results

In Fig. 1 we present our prediction of λT (0, L) at sat-
urated vapor pressure. It agrees reasonably well with
the experimental result for holes 2µm in diameter [2].
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Fig. 1. Theoretical prediction for the thermal conductivity, Eq.

(7), at T = Tλ as a function of L−1. The circle represents the

experimental result by Kahn and Ahlers [2] for holes 2µm in

diameter.

In Fig. 2 we plot our prediction for the relative de-
viation

∆λ =
λb(t̃) − λT (t̃, L)

λb(t̃)
(8)

from the bulk thermal conducivity λb(t̃) ≡ λT (t̃,∞)
at saturated vapor pressure for L = 2µm in the regime
ξ � L (solid line) where ξ is the bulk correlation length
above Tλ. It agrees reasonably well with the experi-
mental data [2] in this regime.
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Fig. 2. Relative deviation ∆λ, Eq. (8), versus reduced temper-

ature. Solid line: Theoretical prediction for L = 2µm in the

regime ξ � L. Squares: Representative set of data taken from

Fig. 2 of Ref. [2].

Our analytical theoretical expression for λT (t̃, L)
will be presented elsewhere [7]. It will enable us to
make quantitative predictions for the finite-size scal-
ing function of λT and for the pressure dependence of
the finite-size effects along the lambda line. This will
provide the basis for testing the range of validity of
universal dynamic finite-size scaling.
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