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Abstract

Electron tunneling in small-area junctions has been treated. It is found that at appropriate successful set of barrier
parameters and electronic characteristics of electrodes quantization the latteral component of the wave vector
manifests itself in the differential conductance as quite noticeable singularities. The second derivative of the tunnel
current versus applied voltage should contain a dictinct periodic structure. It is pointed out that possibility of
manifestation of size-quantum effect should be taken into account in spectroscopic studying
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Quantized electron standing-wave states in thin
films have been studying since seventies of the past
century [1–5]. But all previous works have dealt with
a conventional tunnel junction configuration where
the wave vector component kz (perpendicular to the
barrier plane) is quantized. However, such a configu-
ration is not only possible. In recent years the small-
area tunnel junctions (for example, break-junctions,
point contacts, etc.) are gaining acceptance where the
lateral component k|| (paralel to the barrier plane)
can be quantized. In our opinion, the quantization of
the lateral wave vector can occur in the barrier itself.
Indeed, in the barrier the electron wave function is
decaying only in the z-direction (perpendicular to the
barrier plane) as only the kz -component is imagine,
while lateral component k|| is real and in this plane
the tunneling electron is discribed by a non-decaying
wave. So under appropriate conditions, if the junction
area is small enough, the electronic spectrum of tun-
neling electrons can be akin to a set of two-dimension
bands arranged perpendicular to the barrier plane.

For the sake of definiteness we shall deal with a con-
tact in which the end of the thin quantized film is adja-
cent to a bulk metal electrode (see the inset in Fig.1).
Similar tunneling contacts were used in [6] for studing
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Fig. 1. Conductance vs voltage calculated for parameters:

ϕ1 = ϕ2 = 4 eV , d = 10 Å, EF1 = EF2 = 1 eV ,

L = 100 Å The inset shows the configuration of the tunnel con-

tact under consideration: M1−thin film quantized electrode,

M2−conventional electrode, I−.insulator, S−substrate.

anisotropic properties of metal oxide superconductors.
For simplicity, we assume that both electrodes are fab-
ricated of the same metal with a quadratic energy-
momentum relation so their Fermi energies EF1 = EF2

. The tunnel current calculation has been performed
following assumptions put in [3,4]. To describe the bar-
rier, we use a trapezoidal model, according to which
the application of V causes the shape of the poten-
tial barrier to change according to the law φ (z, V ) =
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φ1 + (φ2 − eV − φ1) z/d, where φ1 and φ2 are the
barrier heights, d is the barrier thickness. We assume
the tunneling to be elastic and specular, i.e., the to-
tal energy of a tunneling electron and its parallel com-
ponent of quasimomentum are conserved. At T = 0,
the occupied states for the nth subband of the quan-
tized electrode lie in the circle whose radius is k1 =√

2m (EF1 − En)/h̄ (all energies are measured from
the bottom of the conduction band of the initial elec-
trode). At the bias voltage the states of electrons taking
part in the tunneling lie within the semi-ring defined
by the radii k1 and k2 =

√
2m (EF1 − eV − En)/h̄

and kz > 0. In contrast to [3,4], these electrons have
different tunneling probabilities P (Ez, V ) and group
velocities therefore the calculation of the tunneling cur-
rent needs integrating over all these states. For eV <
EF1 − En we have obtained

Jn (V ) = K






EF1−En∫

0

P (Ez, V ) k1 (Ez) dEz

−
EF1−eV −En∫

0

P (Ez, V )k2 (Ez) dEz




 , (1)

for eV > EF1 − En,

Jn (V ) = K

EF1−En∫

0

P (Ez , V )k1 (Ez) dEz (2)

k1 (Ez) =
√

2m (EF1 − En − Ez)/h̄,

k2 (Ez) =
√

2m (EF1 − eV − En − Ez)/h̄,

where K =
√

m
2

e
(πh̄)2

.

Analytical expressions for the contribution of the nth
subband to the tunneling conductivity have been ob-
tained by differentiating formula (1) and (2) with re-
spect to voltage. The total conductivity is the sum over
all two-dimensional subbands

σ (V ) = σ0 (V ) + 2

N∑

n=1

σn (V ) . (3)

Results obtained in the WKB-approximation for the
quantized electrode with thickness L = 100 Å are pre-
sented in Fig.1. It shows that for electrodes with the
Fermi energies of the order of 1 eV the electron stand-
ing wave states manifest themselves in the tunneling
conductivity at voltages Vn = (EF1 − En) /e as quite
detectable singularities. According to [7], a zero bias
anomaly in σ (V ) (Fig.1) should be attributed to the
small value of the Fermi energy. In Fig.2 the depen-
dence of the second derivative d2I/dV 2 versus bias

Fig. 2. d2I/dV 2 versus bias voltage V numericaly calculated

for L = 250 Å˙The remaining calculating parameters coincide

with corresponding values in Fig.1

voltage V obtained by numerical differentiating is pre-
sented. It contains sharp dips located at nearly regu-
lar intervals over all range of the bias voltages. In a
contact with a not uniformed quantized electrode the
dips due to the parts of different thickness are super-
imposed. This leads to a non-reproducible structure in
the d2I/dV 2 − V curve. This fact could explain the
complex structure observed in experimental curves far
beyond the electron-phonon interaction spectrum [8].
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