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Abstract

In our experiments on rotating superfluid 3He the interface between the A and B phases is stabilized in a magnetic
field. With decreasing current in the barrier magnet, the shape of the interface changes from almost flat and
perpendicular to the sample axis to a ring of A phase which coats the outer sample boundary, with B phase in the
center. The influence of the shape of the interface on the critical velocity of its shear-flow instability is investigated.
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The shear-flow instability of the interface between
two fluid layers is well-known in classical hydrodynam-
ics. It is attributed to many natural phenomena, such
as the formation of waves by wind. The phenomenon
is usually explained in terms of the Kelvin-Helmholtz
(KH) instability for ideal non-viscous fluids. Recently
the first example of the ideal case was discovered in
rotating superfluid 3He [1]. Here the phase boundary
between 3He-A and 3He-B is stabilized with a mag-
netic field and lies almost perpendicular to the axis
of the cylindrical sample [2]. When the sample is ro-
tated around its axis with angular velocity Ω, the A
phase fills with vortex lines. Its superfluid velocity vsA

mimics the solid-body rotation of the normal compo-
nent: vsA ≈ vn = Ωr, where r is the radial distance
from the rotation axis. In contrast, the B phase re-
mains vortex-free, vsB = 0, and a large counterflow ve-
locity is formed, vsB − vn = −Ωr. When its magnitude
reaches the critical value for the AB interface, vcAB, the
instability develops, producing corrugations on the in-
terface. The experimentally observed fingerprint of the
instability is the penetration of some vorticity to the B
phase. Unlike instabilities in classical systems, whose
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description is plagued by difficulties because of dissi-
pation, the inviscid nature of the vortex-free counter-
flow state in superfluids allows a straightforward theo-
retical formulation of the threshold vcAB, in a manner
similar to the ideal KH model [1].

The instability happens at the outer sample bound-
ary where the counterflow velocity is at maximum,
ie. vcAB = ΩcABR. Here ΩcAB ∼ 1 rad/s is the mea-
sured critical angular velocity and R = 3 mm is the
sample radius. The spatial extent of the instability on
the AB interface is determined by its wavelength λ =
4πσAB/ρsBv2

cAB, where σAB is the surface tension and
ρsB is the B-phase superfluid density. Depending on
experimental conditions, λ varies in the range 0.25 –
1.7 mm.

The spatial aspects of the instability can be checked
by studying its development for interfaces of differ-
ent shapes. The shape of the interface is determined
by the competition of several energy contributions: (a)
Difference in the magnetic energies of the two phases∫
A
(1/2)(χA −χB)(H2

AB −H2
b) dV , where χA,B are the

susceptibilities of the two phases, HAB is the thermo-
dynamic equilibrium value of the magnetic field of the
AB transition at given temperature and pressure, Hb is
the applied magnetic field and the integral is taken over
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Fig. 1. Calculated shapes of the AB interface at different cur-

rents Ib in the barrier solenoid (marked above each verti-

cal cross-section of the cylindrical sample): singly-connected

(a–c) and toroidal (d–f) A-phase configurations. The horizon-

tal dashed line marks the center plane of the barrier magnet.

Parameter values of the calculations: χA−χB =5.25 ·10−8 cgs,

HAB = 2760Gs, σAB = 9.34 · 10−6 erg/cm2, θAB = 68◦, ρsA

= ρsB = 2.28 · 10−2 g/cm3, ΩcA = 0.15rad/s. The B phase is

vortex-free. The calculated magnetic field profile of the bar-

rier magnet is scaled with 1.063 to adjust the A→B transition

above the magnet to the measured current 2.929A in Fig. 2.

the A-phase volume. (b) Surface energy of the interface
and at the sample boundary, σAB(SAB +SAW cos θAB),
where SAB and SAW are the areas of the AB inter-
face and of the container wall covered by the A phase,
and θAB is the contact angle of the AB interface with
the wall. (c) Kinetic energy of the vortex-free super-
flow

∫
A
(1/2)(ρsA(vsA−vn)2−ρsB(vsB−vn)2) dV . Here

vsA and vsB are generally very different since the two
phases carry a different number of vortex lines. All con-
tributions are expressed relative to the situation when
the sample is filled only with B phase.

The parameters in the different energy terms are
known or can be calculated [1]. The magnetic energy
is the dominant contribution and thus the AB inter-
face follows the profile Hb = HAB closely. Deviations
due to surface tension and kinetic energy are limited to
0.1 – 0.2 mm (except when HAB → 0). The numerical
energy minimization in Fig. 1 shows how the AB inter-
face moves up within the magnet (Fig. 1, a→b) when
its current Ib is swept downward (or alternatively the
sample is cooled). The solenoidal field is slightly larger
at the outer boundary than at the axis of the sam-
ple. Thus with decreasing Ib the interface first becomes
curved (Fig. 1b, c) and finally a hole is formed in the
AB interface (Fig. 1d), ie. the stable A phase region is
limited to a toroidal ring. This happens when the field
Hb in the center of the magnet is reduced slightly be-
low HAB and the supercooled A phase in the top part
of the sample becomes directly connected with the B
phase in the bottom part. Its experimental signal is
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Fig. 2. Dependence of the AB-interface instability ΩcAB on the

current Ib in the barrier magnet (at constant T , P ). Measured

in the direction of decreasing Ib, ΩcAB is continuous when a

ring-shaped AB interface with a hole is formed (Fig. 1, c→d).

ΩcAB displays a sharp discontinuous jump down just before the

AB interface finally disappears (Fig. 1f). (Insert) Discontinuity

in ΩcAB measured with larger resolution in Ib.

the A→B transition in the NMR spectrometer which
monitors the top of the sample. With further decrease
of Ib the A-phase ring shrinks towards the container
wall (Fig. 1e, f) and finally disappears.

The critical velocity ΩcAB of the AB-interface insta-
bility is plotted in Fig. 2. The measured dependence fol-
lows ΩcAB ∝ (∇Hb)

1/4 [1], when ∇Hb decreases with
decreasing Ib as the AB boundary approaches the cen-
ter of the barrier magnet. The dependence is continu-
ous across the transition to the toroidal configuration
of the A phase. This fact agrees with our understand-
ing that the instability on the AB interface happens
close to the outer sample boundary and is practically
unaffected by changes which occur in the center.

When Ib is reduced further, a sharp downward jump
is observed in ΩcAB. The width of this discontinuity is
∆Ib/Ib < 10−3. At still lower currents ΩcAB remains
approximately constant. If the sweep direction of Ib is
reversed on this plateau then the dependence of ΩcAB

on Ib shows good reversibility: The hysteretic shift in
the location of the discontinuity in ΩcAB is ∆Ib/Ib <
10−2. At sufficiently small Ib the AB interface dis-
appears which is marked by a discontinuous large in-
crease in ΩcB, now required to create B-phase vortices
by other mechanisms [3]. If Ib is then swept back up,
magnetic hysteresis in nucleating the A phase delays
the formation of a new AB interface. This is marked
by the return of the critical velocity to the ΩcAB curve
in Fig. 2 at a value of Ib which is well above the jump
in ΩcAB.

In configurations at low Ib (Fig. 1f) the size of the
interface is limited in the direction perpendicular to
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the flow to dimensions smaller than the wavelength of
the instability in the infinite system (λ ≈ 0.7 mm in
the present case). We have no calculations of the KH
instability threshold for such a case. Naively one ex-
pects that such spatial restriction makes the interface
stiffer and results in an increase of ΩcAB. The opposite
experimental observation remains so far unexplained.

The possibility to stabilize and control the shape of
the AB interface allows new types of measurements on
the interaction of topological defects with the phase
boundary. For instance, what happens if the B-phase
region within a toroidal A-phase ring is filled with vor-
tex lines and one then starts to increase Ib? The B-
phase vortex lines cannot escape and are squeezed to-
gether in the decreasing B-phase hole. One can then
here study the interaction of the hard-core B-phase
vortex lines with the approaching AB interface [4].

We thank R. Haley for discussions. This collabora-
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3) and the ESF network COSLAB.
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