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Abstract

To investigate quantized vortices in superfluid 3He we have fabricated a vibrating wire from single crystal silicon with
low impurities. The wire is controlled in a goal post shape of 2 mm square. We have investigated the characteristics
of the vibrating wire. The obtained quality factor (Q) is 1.2×105 at the resonant frequency of 8.7 kHz. The high-Q
and shape-controllable vibrating wire of a single crystal silicon has the advantage for the creation and detection of
the quantized vortices in superfluid helium.
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1. Introduction

Recently quantized vortices and turbulences in su-
perfluid 3He and 4He in the ballistic regime have
been studied with oscillators such as an oscillating
micro sphere[1], an oscillating grid[2], and a vibrating
wire[3,4]. Although the oscillators create the vortices
in superfluid actually, the mechanism of the vortex
creation has not been clarified yet. We have developed
a new oscillator fabricated from silicon for studying
the quantized vortex creation in superfluid 3He.

So far conventional Nb-Ti vibrating wires have been
used for the quantized vortex study in superfluid 3He
[3,4]. Our oscillator is also a kind of the vibrating wire
and is fabricated from single crystal silicon wafer. Sin-
gle crystal silicon is useful for high-Q oscillators [5] and
oscillator shape can be easily controlled by etching [6].
These characteristics are advantages of the vortex cre-
ation study. In the present paper we will report the
characteristics of the silicon vibrating wire.
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2. Fabrication and Experimental Method

The vibrating wire was fabricated from a 500 µm
thick 〈100〉 silicon wafer with boron doping of 0.5∼100
Ω·cm. Gold was evaporated into etching patterns of a
goalpost shape on an upper side of the wafer and a
5mm×5mm open square on the other side. The wafer
was etched using a solution of potassium hydrate. Fi-
nally we obtained the vibrating wire which is composed
of silicon wire of 100µm wide and controlled into a goal
post shape of 2mm×2mm as shown in Fig. 1. The evap-
orated gold can be also utilized for an electric lead.

The present wire is similar to a silicon vibrating wire
studied by Grenoble group [7]. They fabricated the wire
by a reactive ion etching (RIE), while we used only the
chemical etching with KOH. The chemical etching uti-
lizes different etching speeds in different crystal orien-
tations for a shape control. One can therefore obtain a
crystal facet after the chemical etching. As a result the
wire surface is smoother by the chemical etching than
by RIE. The roughness of the present wire surface is
within 1 µm.

The vibrating wire was mounted in a superconduct-
ing magnet. A synthesizer oscillator applied a current
into the vibrating wire and an induced voltage due to
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Fig. 1. Photograph of the silicon vibrating wire. The vibrating

part is free in the open window of silicon wafer.

a motion by Lorentz force was detected with a Lock-in
amplifier. The resistance of the vibrating wire is 4 Ω at
4.2 K. Because of the non-superconducting lead we es-
timated the induced voltage by subtracting a voltage
due to the resistance.

3. Results and Discussion

We have investigated the characteristics of the vi-
brating wire in vacuum at 4.2K in a magnetic field
of 50 mT. Driving the wire at a peak velocity of 7.6
mm/s we found a quality factor (Q) of 1.2×105 at a
resonant frequency of 8.7 kHz. The obtained Q value is
much higher than conventional Nb-Ti vibrating wires
and four times higher than that of the previous sili-
con vibrating wire [7]. The higher Q is attributable to
the quality of a silicon wafer. The resistivity of our sil-
icon wafer is higher than 25 mΩ·cm of the wafer in the
Grenoble study [7]. This indicates lower impurities in
our wafer. Since impurities in a silicon oscillator cause
an energy loss [5], the higher Q result is attributable
to low impurities in the silicon wire.

We have also measured the Q value at various wire
velocities as shown in Fig. 2. The Q value remains fairly
constant at low velocities and decreases with increasing
velocity above 2 mm/s. In the Lancaster studies [3,4]
the quantized vortices and the quantum turbulences
are created by a vibrating wire moving at maximum
velocities around the Cooper pair breaking velocity of
9 mm/s. Since the silicon vibrating wire has still high
Q up to 100 mm/s, it is expected that a vortex creation
can be detected easily.

In the present wire we used evaporated gold as an
electric lead. Because of non-superconducting lead a
heat in the wire is generated by an applied current.
At a wire velocity of 10 mm/s in vacuum an applied
current is 7.6 µAp−p, which causes a heat of 30 pW.
Although the large Kapitza resistance prevents such a
small heat leak into superfluid 3He, the heat leak might
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Fig. 2. Quality factor (Q) of the silicon vibrating wire as a

function of maximum velocity for a wire moving.

cause a temperature gradient. In this case supercon-
ductor such as niobium is necessary for reducing heat
leak. Disappearance of a voltage due to a supercon-
ducting lead also improves the signal to noise ratio of
the silicon vibrating wire.

4. Conclusion

We have fabricated a vibrating wire from single crys-
tal silicon. The obtained quality factor (Q) in vacuum
at 4.2 K is much higher than the conventional Nb-Ti
vibrating wire. The wire velocity dependence of Q im-
plies that the silicon vibrating wire can detect a vortex
creation in superfluid 3He.
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