

# Lanthanoid Substitution in $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$ System

Takashi Mochiku<sup>a,1</sup>, Yu Nakano<sup>b</sup>, Yasumasa Mihara<sup>b</sup>, Yoshiaki Hata<sup>c</sup>, Jun-ichi Suzuki<sup>c</sup>, Kazuo Kadowaki<sup>b</sup>, Kazuto Hirata<sup>a</sup>

<sup>a</sup>Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

<sup>b</sup>Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

<sup>c</sup>Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

---

## Abstract

The  $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$  compound exhibits superconductivity around 50 K. We have synthesized the single phase sample of  $\text{Sr}_2\text{LnCu}_2\text{FeO}_{6+\delta}$  ( $\text{Ln}=\text{Nd, Er}$ ) where  $\text{Ln}$  is substituted for  $\text{Y}$  in  $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$ . While  $\text{Sr}_2\text{ErCu}_2\text{FeO}_{6+\delta}$  exhibits superconductivity,  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$  does not exhibit superconductivity. We have analyzed the crystal structure of  $\text{Sr}_2\text{LnCu}_2\text{FeO}_{6+\delta}$  to compare with that of  $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$  using X-ray and neutron powder diffraction. From these studies it was found that  $\text{Cu}$  was substituted for  $\text{Fe}$  and similarly  $\text{Sr}$  for  $\text{Ln}$  in  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$ , resulting in a severe reduction of  $T_c$  in this system.

*Key words:* Fe1212; magnetic superconductor; crystal structure; neutron diffraction

---

## 1. Introduction

Superconductivity has been discovered around 50 K in  $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$ [1,2]. This compound exhibits superconductivity, only when it is properly annealed in  $\text{N}_2$  atmosphere and subsequently in  $\text{O}_2$  atmosphere. It has been shown by neutron powder diffraction study that  $\text{N}_2$ -annealing causes ordering of  $\text{Cu}$  and  $\text{Fe}$  atoms, and that  $\text{O}_2$ -annealing supplies the charge on the  $\text{CuO}_2$  sheets. Although it is possible to substitute other lanthanoid elements for  $\text{Y}$  in  $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$  like  $\text{Ba}_2\text{YCu}_3\text{O}_{6+\delta}$ ,  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$  does not exhibit superconductivity with the same annealing process as superconducting  $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$ . Therefore, we have performed the X-ray and neutron powder diffraction to investigate the difference in the crystal structure between superconducting  $\text{Sr}_2\text{LnCu}_2\text{FeO}_{6+\delta}$  ( $\text{Ln} = \text{Y}$  and  $\text{Er}$ ) and nonsuperconducting  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$ .

## 2. Experimental

Samples were prepared by the solid-state reaction of stoichiometric mixture of  $\text{SrCO}_3$ ,  $\text{Ln}_2\text{O}_3$  ( $\text{Ln} = \text{Y, Nd and Er}$ ),  $\text{CuO}$  and  $\text{Fe}_2\text{O}_3$  powders. The mixture was calcined at 900°C for 24 h in air, ground and then pressed into pellets. The pellets were sintered at 1000°C for 24 h in air. The samples were subsequently annealed at 800°C for 24 h in an  $\text{N}_2$  flow, at 300°C for 24 h in an  $\text{O}_2$  flow, and finally at 350°C for 24 h in high oxygen pressure of 190 atm. The samples were characterized by X-ray and neutron powder diffraction, magnetic susceptibility and resistivity. Neutron diffraction were performed with high-resolution powder diffractometer, HRPD, at the research reactor, JRR-3M, in the Japan Atomic Energy Research Institute. The intensity data were collected using cold neutron radiation with wave length of 0.1825 nm in the case of  $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$  and of 0.1823 nm in the case of  $\text{Sr}_2\text{LnCu}_2\text{FeO}_{6+\delta}$  ( $\text{Ln} = \text{Nd and Er}$ ) at room temperature.

---

<sup>1</sup> E-mail: mochiku.takashi@nims.go.jp

### 3. Structure Refinements

The structure of the  $\text{Sr}_2\text{LnCu}_2\text{FeO}_{6+\delta}$  compounds was refined using the Rietveld refinement program RIETAN[3] on the basis of the tetragonal  $\text{Ba}_2\text{YCu}_3\text{O}_{6+\delta}$ -type structure model. The atomic coordinates are

|              |                                                |
|--------------|------------------------------------------------|
| Sr           | in 2h: $\frac{1}{2} \frac{1}{2} z$ ,           |
| Y            | in 1d: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ , |
| Cu(1), Fe(1) | in 1a: 0 0 0,                                  |
| Cu(2), Fe(2) | in 2g: 0 0 $z$ ,                               |
| O(1)         | in 2f: 0 $\frac{1}{2}$ 0,                      |
| O(2)         | in 2g: 0 0 $z$ ,                               |
| O(3)         | in 4l: 0 $\frac{1}{2}$ $z$ .                   |

The intensity data for the  $2\theta$  region between  $20^\circ$  and  $155^\circ$  were used for the refinement. Preliminary refinements revealed that the O(1) atom was shifted from 2f site  $(0, \frac{1}{2}, 0)$  to twofold split 4n site  $(x, \frac{1}{2}, 0)$  in all samples. This indicates that those atoms have large thermal motion in the  $ab$ -plane. In table 1 the final  $R$  factors, the lattice and structure parameters and their standard deviations are listed.

### 4. Discussion

The  $\text{Sr}_2\text{ErCu}_2\text{FeO}_{6+\delta}$  compound has almost same structure as the  $\text{Sr}_2\text{YCu}_2\text{FeO}_{6+\delta}$  compound. However, the  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$  compound has the different structure from that, because  $R$  factors are reduced from  $R_{wp} = 10.31\%$  to  $8.91\%$  by introduction of the O(4) site at  $(0, 0, \frac{1}{2})$  between double  $\text{CuO}_2$  sheets. This indicates that the  $\text{CuO}_2$  sheets in the  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$  compound may be disordered like  $\text{Nd}_{2-x}\text{Sr}_{1+x}\text{CuO}_{6-\delta}$ [4]. Moreover, larger thermal parameter of the O(3) site,  $B_{O(3)}$ , shows that the O(3) site may be deficient. Although neutron diffraction can not distinguish positions between Sr and Nd because the scattering length of Sr (7.02 fm) is close to that of Nd (7.69 fm), X-ray diffraction can do. X-ray diffraction study of the  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$  compound shows that the Sr atoms substitute the Nd atoms. Therefore, the disordered distribution of the Sr and Nd atoms causes the introduction of the oxygen atom to the O(4) site, to suppress superconductivity. The occupation factors of the Cu(2) site,  $g_{Cu(2)}$ , indicate that it is easier to substitute Cu for Fe in  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$  than in  $\text{Sr}_2\text{LnCu}_2\text{FeO}_{6+\delta}$  ( $\text{Ln} = \text{Y}$  and  $\text{Er}$ ). This also supports suppressing superconductivity in  $\text{Sr}_2\text{NdCu}_2\text{FeO}_{6+\delta}$ .

Table 1

Final results of the Rietveld refinements for the  $\text{Sr}_2\text{LnCu}_2\text{FeO}_{6+\delta}$  ( $\text{Ln} = \text{Nd}, \text{Y}$  and  $\text{Er}$ , tetragonal,  $P4/mmm$ ,  $Z=1$ ) compounds.  $g$  is the occupation factor.  $B$  is the isotropic thermal parameter in  $\text{nm}^2$ . Numbers in parentheses are estimated standard deviations of the last digit, and those without deviations are fixed.

| Ln                      | Nd         | Y          | Er         |
|-------------------------|------------|------------|------------|
| $R_{wp}$                | 8.91%      | 9.25%      | 10.05%     |
| $R_p$                   | 6.81%      | 6.88%      | 7.30%      |
| $R_R$                   | 15.91%     | 12.41%     | 15.73%     |
| $R_I$                   | 6.42%      | 2.76%      | 2.97%      |
| $R_F$                   | 5.02%      | 1.88%      | 1.97%      |
| $R_e$                   | 5.35%      | 6.49%      | 6.58%      |
| $S$                     | 1.66       | 1.43       | 1.53       |
| $a/\text{nm}$           | 0.38436(1) | 0.38220(1) | 0.38158(1) |
| $c/\text{nm}$           | 1.14581(3) | 1.13651(3) | 1.13491(4) |
| $z_{Sr}$                | 0.1757(2)  | 0.1803(2)  | 0.1809(3)  |
| $B_{Sr}/\text{nm}^2$    | 0.0125(4)  | 0.0091(4)  | 0.0087(5)  |
| $B_{Ln}/\text{nm}^2$    | 0.0121(6)  | 0.0053(5)  | 0.0060(7)  |
| $g_{Cu(1)}$             | 0.37(5)    | 0.19(3)    | 0.28(6)    |
| $B_{Cu(1)}/\text{nm}^2$ | 0.0045(8)  | 0.0049(6)  | 0.0031(9)  |
| $g_{Cu(2)}$             | 0.81(3)    | 0.90(2)    | 0.86(3)    |
| $z_{Cu(2)}$             | 0.3400(2)  | 0.3497(2)  | 0.3502(2)  |
| $B_{Cu(2)}/\text{nm}^2$ | 0.0084(5)  | 0.0049(1)  | 0.0049(6)  |
| $g_{O(1)}$              | 0.436(7)   | 0.419(5)   | 0.412(9)   |
| $x_{O(1)}$              | 0.061(2)   | 0.075(2)   | 0.082(2)   |
| $B_{O(1)}/\text{nm}^2$  | 0.0188(16) | 0.0188(15) | 0.0152(23) |
| $z_{O(2)}$              | 0.1613(3)  | 0.1617(2)  | 0.1619(3)  |
| $B_{O(2)}/\text{nm}^2$  | 0.0237(7)  | 0.0144(6)  | 0.0126(8)  |
| $z_{O(3)}$              | 0.3549(2)  | 0.3723(1)  | 0.3729(3)  |
| $B_{O(3)}/\text{nm}^2$  | 0.0174(7)  | 0.0074(4)  | 0.0066(5)  |
| $g_{O(4)}$              | 0.378(10)  | -          | -          |
| $B_{O(4)}/\text{nm}^2$  | 0.01       | -          | -          |

### References

- [1] J. Shimoyama, K. Otzschi, T. Hinouchi, K. Kishio, Physica C **341-348** (2000) 563.
- [2] T. Mochiku, Y. Mihara, Y. Hata, S. Kamisawa, M. Furuyama, J. Suzuki, K. Kadowaki, N. Metoki, H. Fujii, K. Hirata, J. Phys. Soc. Jpn. **71** (2002) 790.
- [3] F. Izumi and T. Ikeda, Mater. Sci. Forum **321-324** (2000) 198.
- [4] J. R. Grasmeder, M. T. Weller, J. Solid State Chem. **85** (1990) 88.