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Abstract

Local magnetic properties of composition-spread Nd1−xSrxMnO3 (NSMO; x = 0.4− 0.6) films were surveyed by a
scanning SQUID microscope under irradiation. We have found that the spontaneous magnetization of the FM phase
is significantly enhanced by the laser irradiation (λ = 532 nm), while the phase boundary is essentially unchanged.
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1. Introduction

A perovskite manganite Nd1−xSrxMnO3 (NSMO)
exhibits a variety of electronic phases, including fer-
romagnetic metal (FM), antiferromagnetic insulator
(AFI), charge ordered (CO) state, and canted AFI, de-
pending on chemical composition x and temperature.
Around x = 0.5, where the FM, CO and AFI phases
meet, and thus different interactions are competed with
each other, the electronic structure might be control-
lable by applying small perturbations, such as photo-
induced carriers.

Previously, we have demonstrated that magnetic
phase diagrams of La1−xCaxMnO3 [1], La1−xSrxMnO3

[2] and NSMO [3] can be rapidly constructed by sur-
veying the magnetic domain structures of correspond-
ing composition-spread thin films with a scanning
SQUID microscope. In the present study, we have
examined the magnetic properties of NSMO films in
composition-spread form under irradiation of visible
light. The obtained phase diagram without irradiation
is in good agreement with those already established
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in bulk materials [4]. Photo-irradiation did not essen-
tially affect the phase boundary, but enhanced the
magnetic moment is depending on x, significantly
enhanced up to 40 − 50 %, depending on x.

2. Experimental

A composition-spread NSMO film with a thickness
of 190 nm was fabricated on a SrTiO3 (STO) sub-
strate, using a laser MBE technique, where the sub-
strate temperature, oxygen pressure and laser power
were set to 720 K , 1.0 mTorr, and 230 mW, respec-
tively. The Sr composition x in Nd1−xSrxMnO3 was
continuously spread from 0.4 to 0.6. For irradiation, we
used a Nd:YVO4 laser (λ = 532 nm). Because the lat-
tice constant of SrTiO3 (0.395 nm) is larger than that
of NSMO with x = 0.4 − 0.6, the film feels a tensile
strain in the in-plane direction.

A scanning SQUID microscope (SSM), equipped
with a miniature SQUID ring (10 µmφ) near the edge
of the cantilevar, was used to sense the local magnetic
field perpendicular to the film surface, Bz, without an
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external magnetic field at 3 K. Its spatial and field
resolutions are 5 µm and 50 nT, respectively [5].

3. Results and discussion

Figure 1(a) is a line scan profile of Bz along the
composition-spread direction of the NSMO film at 3 K
without laser irradiation. The figure shows an oscillat-
ing structure, demonstrating the presence of magnetic
domains, as shown in Fig. 2. The envelope of |Bz| pro-
file is approximately proportional to the magnitude of
spontaneous magnetization at each value of x. Below
x ∼ 0.5, |Bz| is abruptly increased and reaches to ∼40
µT, while |Bz| is as low as 1 µT for x > 0.5. This re-
sult is quite consistent with the bulk phase diagram in
which the FM phase is located at x < 0.5 [4]. In other
words, the phase diagram around x = 0.5 is not modi-
fied so much by the tensile strain from the substrate.

Figure 1(b) is a Bz profile taken after the irradia-
tion for 90 min. The laser power was 50 mW/mm2. By
comparing two curves, it is notable that the |Bz| values
below x = 0.5 is considerably enhanced up to ∼ 50%.
Interestingly, the presently observed |Bz| change is a
very slow process with a rate of ∼0.2µT/min. More-
over, the phase boundary around x = 0.5 does not
move at all. Therefore, this phenomena cannot be ex-
plained by a simple photo-carrier injection picture, as
proposed by Katsu et al. [6, 7] in LSMO/STO.

The mechanism of the photo-induced |Bz| enhance-
ment in Fig. 1 is unknown at present, however, there
seems to be two possibilities. Firstly, irradiation may
cause drastic rearrangement of magnetic domains, al-
though we have not confirmed this in an experimen-
tal sense. For instance, if the domains are enlarged by
photons, the stray fields generated from the domain
boundaries are, in general, expected to rise. The sec-
ond possibility is based on the assumption that the
FM region of the present film undergoes microscopic
phase separation into magnetic and non-magnetic re-
gions. Photo-irradiation may trigger a non-magnetic to
magnetic phase transition, as reported in PrCaMnCrO
[8].

4. Summary

We have investigated the local magnetic properties
of a composition-spread NSMO film, using a scanning
SQUID microscope. The observed Bz profile well cor-
responds to the bulk phase diagram, implying that
the strain from substrate is negligible in the present
NSMO film. Photo-irradiation significantly enhanced
Bz of the FM region, but the phase boundary remained
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Fig. 1. Bz line profiles of the composition-spread NSMO film

before and after irradiation at 3 K.

Bz [µT]

Fig. 2. Two-dimentional magnetic images of NSMO film at 3

K, 400µm×100µm.

unchanged. The reaction is as slow as ∼0.2µT/min for
irradiation of 50 mW/mm2, implying that the phe-
nomenon is not understandable within a simple photo-
carrier injection scenario.
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