

Experimental evidences for two-gap superconductivity in MgB_2

A.I.Golovashkin ^{a,1}, N.V.Anshukova ^a, B.M.Bulichev ^b, L.I.Ivanova ^c, A.A.Minakov ^d,
A.P.Rusakov ^c

^a*P.N.Lebedev Physical Institute RAS, Moscow, Russia*

^b*Moscow State University, Moscow, Russia*

^c*Moscow Steel and Alloys Institute, Moscow, Russia*

^d*General Physics Institute RAS, Moscow, Russia*

Abstract

It was experimentally observed for MgB_2 two jumps of the specific heat and two features of the thermal conductivity: the first at $T \approx T_c \approx 40K$ and the second at $T \approx 10 - 11K$. At $T \leq 11K$ the negative thermal expansion of MgB_2 was also observed. All anomalies at $T \approx 10 - 11K$ were explained by the presence in MgB_2 the second group of charge carriers and their Bose condensation.

Key words: specific heat; thermal expansion; MgB_2 ; superconductivity

Specific heat $C(T)$ and thermal conductivity $K(T)$ of MgB_2 were measured at temperatures $T = 5 - 45K$. The MgB_2 samples were obtained by the hot-pressure method. The single-phase material was synthesized. The density of the sintered MgB_2 was 97% from the ideal X-ray density. The quality of these samples was tested by measurements of electric, magnetic, and other properties. Meissner-effect was 44%. $C(T)$ and $K(T)$ were measured by the modulation calorimetric method [1]. The error was 0.3% for specific heat and 1% for thermal conductivity.

In the Fig.1 $C(T)/T$ is shown in the interval $T = 5 - 45K$. One can see two jumps: the first at $T \approx 38 - 40K$ and the second at $T \approx 10 - 11K$. These jumps $\Delta C/T$ are shown separately in the two insets. They were obtained by using Debye extrapolation from the nearest area above the jumps temperatures.

The dependence $K(T)$ also has two anomalous area: one at $T \approx 38 - 40K$ and another at $T \leq 10 - 11K$. In Fig.2 dependence $K(T)$ is shown at $T \approx 5 - 20K$.

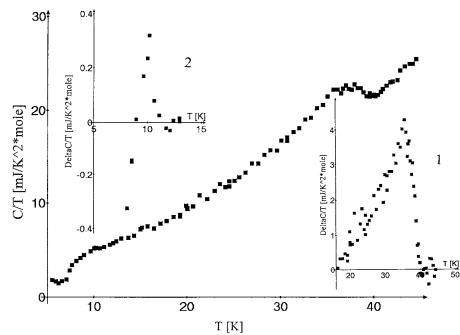


Fig. 1. The specific heat temperature dependence $C(T)/T$ of MgB_2 . Inset 1: $\Delta C(T)/T$ at $T \approx 40K$; inset 2: $\Delta C(T)/T$ at $T \approx 10 - 11K$.

The obtained data can be explained by the existence of two groups of carriers in MgB_2 [2]. The superconducting transition at $T \approx 40K$ is connected with Bose condensation of the first group of the carriers. The anomalous jumps of $C(T)$ and $K(T)$ at $T \approx 10 - 11K$ are defined by the second group of the carriers. At the same $T \leq 11K$ the anomalous (negative) thermal expansion of MgB_2 was also observed [3].

The parameters of these two groups of the carri-

¹ Corresponding author. Present address: Department of Solid State Physics, P.N.Lebedev Physical Institute RAS, Moscow, Russia, E-mail: golov@sci.lebedev.ru

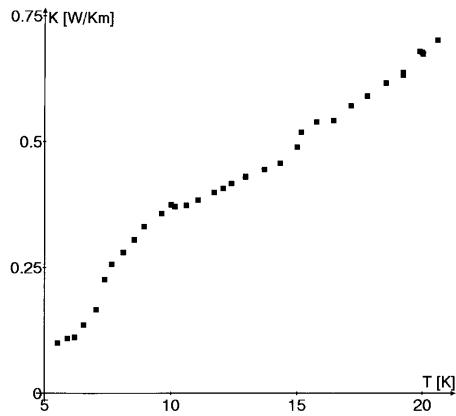


Fig. 2. The temperature dependence of the MgB_2 thermal conductivity at $T \leq 15K$.

ers were estimated from obtained experimental data. These data indicate on the existence of two-gap superconductivity in MgB_2 .

Acknowledgements

The work was supported by the Russian Foundation of Fundamental Researches (project 01-02-16395) and by the Russian Scientific Counsel on HTS Problems.

References

- [1] A.A.Minakov et al. Thermochim. Acta **377** (2001) 173.
- [2] A.Y.Liu et al. Phys. Rev. Lett. **87** (2001) 087005.
- [3] N.V.Anshukova et al. Russian Solid State Physics (in print).