

# Magnetization process of an $S = 1$ antiferromagnetic bond alternating chain at 0.1 K

Yasuo Narumi <sup>a,1</sup>, Masayuki Hagiwara <sup>b</sup>, Ryutaro Sato <sup>c</sup>, Koichi Kindo <sup>a</sup>

<sup>a</sup> KYOKUGEN, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

<sup>b</sup> RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan

<sup>c</sup> Faculty of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

---

## Abstract

Magnetization measurements at 0.1 K up to 52 T have been performed on a powder sample of  $[\text{Ni}(\text{C}_9\text{H}_{24}\text{N}_4)(\mu\text{-N}_3)](\text{ClO}_4)$  which is regarded as an  $S = 1$  antiferromagnetic bond alternating chain compound with no spin gap. No anomaly indicating an existence of a spin gap was observed at 0.1 K. The experimental result indicates that this compound is a gapless system with experimental accuracy.

*Key words:* magnetization; bond alternating antiferromagnet; dilution refrigerator

---

## 1. Introduction

The linear chain antiferromagnets (LCA) with spin value ( $S$ ) of 1/2 has been investigated as a quantum spin system without a spin gap from the early 1930s [1–3]. Model compounds for this system were fabricated and studied mostly in the 1960s and 1970s [3]. Haldane's conjecture [4] evoked the studies of LCA, especially with  $S = 1$  which was expected to be massive and confirmed experimentally and numerically. Affleck and Haldane [5] investigated antiferromagnetic bond alternating chains as the extension of Haldane's conjecture. They used the Hamiltonian given by  $H = \sum_i (1 - (-1)^i \delta) \mathbf{S}_i \cdot \mathbf{S}_{i+1}$ , where the  $\mathbf{S}_i$ ,  $\mathbf{S}_{i+1}$  are spin operators at the site of  $i$  and  $i+1$  and the  $\delta$  represents strength of bond alternation. They indicated that the bond alternating chain should have quantum critical points with gapless excitation when the system has a certain  $\delta_c$ . The fact that the system with  $S = 1/2$  shows no gap at only  $\delta_c = 0$  has been well established

theoretically and experimentally. In the case of  $S = 1$ , recent numerical studies [6–12] estimated the critical value  $\delta_c \sim 0.25$ .

From experimental point of view, Hagiwara *et. al.* [13] revealed that  $[\text{Ni}(\text{C}_9\text{H}_{24}\text{N}_4)\text{N}_3](\mu\text{-N}_3)(\text{ClO}_4)$  (abbreviated as NTEAP) has the nearly critical ratio  $\alpha_c = 0.6$  between nearest neighbor exchange constants where  $\alpha$  is defined by  $\alpha = (1 - \delta)/(1 + \delta)$ . The susceptibility curve shows a very similar to that of the antiferromagnetic Heisenberg chain with spin-1/2 [14,15]. The magnetization curve increases continuously from zero magnetic field at 1.4 K. These two experimental results can be well reproduced by the antiferromagnetic bond alternating chain with spin-1 at the gapless point. In order to confirm with more experimental accuracy whether the compound has a gap or not, it is necessary to perform magnetic measurements at sufficiently low temperature. In the present work, magnetization at 0.1 K up to 52 T has been measured by using a pulse magnet and a dilution refrigerator. The experimental result was also compared with the numerically calculated one for  $\alpha = 0.6$ .

---

<sup>1</sup> Corresponding author. Present address: Riken Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan  
E-mail: narumi@spring8.or.jp

## 2. Experimental Preparations and Crystal Structure

High field magnetization measurements have been performed by using the non-destructive pulse magnet combined with the FRP-made dilution refrigerator installed at KYOKUGEN Osaka University. Magnetization curves were obtained by an induction method up to 52 T at 100 mK. NTEAP was synthesized by a slow evaporation method. Powder sample of NTEAP was filled inside a cylindrical Teflon tube and mounted in  $^3\text{He}$ - $^4\text{He}$  mixture.

NTEAP crystallizes in the triclinic system, space group  $P\bar{1}$  [16]. Each Ni atom is surround octahedrally with nitrogen atoms and links to the neighboring Ni atoms through azido ( $\text{N}_3$ ) groups to form the chain structure along the  $c$ -axis. The neighboring chains are well separated from each other by  $\text{ClO}_4^-$  anions. Two kinds of alternating centrosymmetric azido bridges are present in the chain. The Ni-N bond distances and Ni-N bond angles for these azido bridges are 2.077(3) Å, 142.4(3) $^\circ$  and 2.204(3) Å, 123.6(2) $^\circ$ , respectively, giving bond alternation in the chain.

## 3. Results and Discussions

Figure 1 shows the magnetization process at 0.1 K when magnetic fields were applied up to 52 T. We could find no region which shows zero-magnetization. The magnetization increases from zero magnetic field with a concave curvature. The whole behavior is quite similar to that measured at 1.4 K [13]. It is noted that an absence of a long range order was reported by a heat capacity measurement [17]. The numerical calculation made by PWFRG method [18] is also shown for the parameter of  $\alpha = 0.6$  at zero kelvin. The experimental result is in good agreement with the calculated one. Accordingly, we can conclude more accurately that NTEAP lies quite near the gapless critical point.

## Acknowledgements

This work was carried out under the Visiting Researcher's program of KYOKUGEN in Osaka University. This study was partially supported by a Grand-in-Aid for Scientific Research from the Japanese Ministry of Education, Science, Sports and Culture.

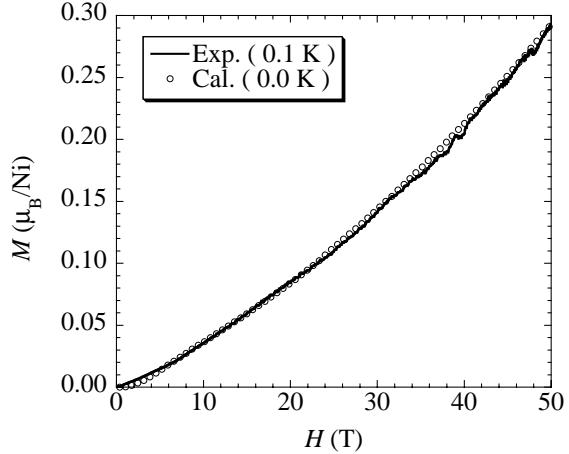



Fig. 1. Magnetization process of NTEAP at 0.1 K. Solid line and open circles represent experimental and numerical results, respectively.

## References

- [1] H. A. Bethe, *Z. Phys.* **25** (1931) 205.
- [2] J. des Cloizeaux, J. J. Pearson, *Phys. Rev.* **128** (1962) 2131.
- [3] Y. Endoh, G. Shirane, R. J. Birgeneau, P. M. Richerds, S. L. Holt, *Phys. Rev. Lett.* **32** (1974) 170.
- [4] F. D. M. Haldane, *Phys. Lett.* **93A** (1983) 464.; *Phys. Rev. Lett.* **50** (1983) 1153.
- [5] I. Affleck, F. D. M. Haldane, *Phys. Rev. B* **36** (1987) 5291.
- [6] R. R. P. Singh, M. P. Gelfand, *Phys. Rev. Lett.* **61** (1988) 2133.
- [7] Y. Kato, A. Tanaka, *J. Phys. Soc. Jpn.* **63** (1994) 1277.
- [8] S. Yamamoto, *J. Phys. Soc. Jpn.* **63** (1994) 4327.; *Phys. Rev. B* **51** (1995) 16128.; *ibid B* **52** (1995) 10170.; *ibid B* **55** (1996) 3603.
- [9] K. Totsuka, Y. Nishiyama, N. Hatano, M. Suzuki, *J. Phys. Condens. Matter* **7** (1995) 4895.
- [10] A. Kitazawa, K. Nomura, K. Okamoto, *Phys. Rev. Lett.* **76** (1996) 4038.
- [11] K. Totsuka, *Phys. Lett. A* **228** (1997) 103.
- [12] M. Kohno, M. Takahashi, M. Hagiwara, *Phys. Rev. B* **57** (1998) 1046.
- [13] M. Hagiwara, Y. Narumi, K. Kindo, M. Kohno, H. Nakano, R. Sato, M. Takahashi, *Phys. Rev. Lett.* **80** (1998) 1312.
- [14] S. Eggert, I. Affleck, M. Takahashi, *Phys. Rev. Lett.* **73** 332 (1994).
- [15] S. Takagi, H. Deguchi, K. Takeda, M. Mito, M. Takahashi, *J. Phys. Soc. Jpn.* **65** (1996) 1934.
- [16] A. Escuer, R. Vicente, J. Ribas, M. S. E. Fallah, X. Solans, M. Font-Bardia, *Inorg. Chem.* **33** (1994) 1842.
- [17] T. C. Kobayashi private communication.
- [18] T. Nishino and K. Okunishi, *J. Phys. Soc. Jpn.* **64** (1995) 4085.