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Abstract

The effect of randomness on the magnetization plateaux in frustrated S = 1/2 Heisenberg chains is studied by the
DMRG method. It is shown that the random mixture of two kinds of chains with plateaux due to spontanuous
translational symmetry breakdown at Ms/2 (Ms: the full magnetization) does not show a plateaux at Ms/2. In the
S = 1/2 frustrated Heisenberg chains with bond alternation and random sign strong bonds, the plateau at Ms/2
splits by randomness while an additional plateau is generated at M = (1 − p)Ms.
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1. Introduction

The magnetization plateau in quantum spin systems
is attracting much attention as the field induced spin
gap states[1–3]. Oshikawa, Yamanaka and Affleck[4]
proposed the necessary condition for the magnetiza-
tion plateaux as QGS(S − M) = integer where QGS is
the spatial periodicity of the magnetic ground state,
S is the magnitude of the spin and M is the magne-
tization per site. It should be noted that QGS is not
always equal to the spatial periodicity of the Hamilto-
nian QHam.

Recently, the randomness induced plateau is found
in the S = 1/2 Heisenberg chains with bond alterna-
tion and random sign strong bonds[5]. Similar observa-
tion has been made by Cabra and coworkers[6] for ran-
dom q-merized chains. On the other hand, Totsuka[7]
discussed that the plateau in regular chains induced
by the imposed periodicity (QGS = QHam) is stable
against weak randomness while the plateau induced
by the spontanuous translational symmetry breakdown
(STSB) (QGS �= QHam) is unstable against random-
ness due to Imry-Ma effect[8].
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Therefore the randomness induces the magnetiza-
tion plateau on one hand and on the other hand it
destroys the plateau. In the present work, we inves-
tigate the interplay of these two apparently contra-
dicting aspects of randomness effect on the magnetiza-
tion plateau using the density matrix renormalization
group (DMRG) method[9].

2. Model Hamiltonian

As a simplest model which exhibits a plateau accom-
panied by STSB, we consider the S = 1/2 Heisenberg
chain with next-nearest-neighbour interaction whose
Hamiltonian is given by,

H =

N−1∑

i=1

Ji�i�i+1 +

N−2∑

i=1

Jδ�i�i+2 (1)

where the bond alternation and randomness is intro-
duced in the distribution of Ji. In the following, we
consider the following two types of randomness: (i)
random bond alternation: Ji = J(1 + (−1)iαi) where
αi = α1(α2) with probability p (1−p) and (ii) random
sign strong bonds: J2i−1 = J > 0 and J2i = JA(JF)
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Fig. 1. (a) The magnetization curves of the random frustrated

random Heisenberg chains with δ = 0.2, α1 = 0.5 and α2 = 0.6.

(b) The magnetization curves of the frustrated Heisenberg

chains with bond alternation and random sign strong bonds

with JA = 1.5,JF = −1.5, J = 1.0 and δ = 0.2. The system

size is N = 82 and average is taken over 40 samples.

with probability p (1 − p) where JA > J and JF < 0.
In the pure case (p = 1), this model has a plateau at
magnetization M = Ms/2 with STSB (QGS = 2QHam)
for appropriate values of α and δ[2,3] where Ms is the
saturation magnetization per site.

3. Numerical Results

Case (i) Frustrated Heisenberg chain with random
bond alternation

For δ = 0.2, the plateau region of the chains with
α = 0.5 and α = 0.6 have finite overlap. Even in this
overlap region, no plateau appears in the mixed chain
as shown in Fig. 1(a). This verifies the fragility of the
plateau accompanied by STSB against randomness due
to Imry-Ma effect[8] as predicted by Totsuka[7].

It should be also remarked that the plateau with
M = 0 (spin gap) remains stable. This plateau is due to
the imposed bond alternation (QGS = QHam) so that
this result is also in accord withTotsuka’s prediction[7].
Case (ii) Frustrated chains with bond alternation and
random sign strong bonds

This model shows the randomness induced plateau
at M = Ms(1 − p) as in the unfrustrated case[5]. The
fate of the plateau at M = Ms/2 is different from
that of case (i). The plateau no more exists at M =
Ms/2 for finite p but it does not vanish. It splits into
two plateaux with magnetizations Mp1 and Mp2 as de-
picted in Fig. 1(b). Mp1 and Mp2 depend nonlinearly
on 1 − p as shown in Fig. 2. This is in contrast to the
case of the linear p-dependence of the plateau in ran-
dom q-merized chain[6].

The p-dependence of Mp1 and Mp2 can be under-
stood by introducing randomness into the strong cou-
pling picture for the plateau state proposed by Tot-
suka[3,7]. The stable plateaux are expected at Mp1 =
Ms[1−p+p2/(1+p)] and Mp2 = Ms[1−p+p3/(1+p)].
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Fig. 2. The (1 − p)-dependence of the magnetization on the

plateau which reduces to the M = Ms/2 plateau in the pure

limit (p = 1) for the frustrated Heisenberg chains with bond

alternation and random sign strong bonds. The filled and open

circles represent Mp1 and Mp2, respectively. The solid and

dotted curevs represent the analytical estimation.

These are in agreement with the numerical results as
plotted in Fig. 2 by solid and dotted curves.

4. Summary and Discussion

The magnetization plateaux in random quantum
spin chains are investigated by the DMRG method. Up
to now, the extensive experimental study of magneti-
zation plateau with the interplay of randomness and
frustration has not yet been carried out. Considering
the variety of phenomena predicted analytically and
numerically and recent progress of high magnetic field
technique, fruitlful physics is expected in this field in
the near future.
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