

Metamagnetism of PrCu_2X_2 (X=Si and Ge)

Toru Shigeoka ^{a,1}, Yasuyuki Taneda ^a, Masato Hedo ^b, Yoshiya Uwatoko ^b

^aFaculty of Science, Yamaguchi University, Yoshida, Yamaguchi 753-8512, Japan.

^bInstitute of Solid State Physics, University of Tokyo, Chiba, 277-8581, Japan.

Abstract

Magnetic behavior in low temperatures has been investigated on PrCu_2X_2 (X=Si and Ge) single crystal compounds with anomalously high Neel temperatures. The compound PrCu_2Si_2 shows a very sharp one-step metamagnetic transition in the c-axis magnetization process at low temperature, while PrCu_2Ge_2 shows a four-step metamagnetic process in the virgin ascending process e-step one in the descending one where magnetization decreases rapidly and crosses over one of the ascending process; a peculiar irreversible process appears, which has been never seen yet.

Key words: Metamagnetism; Antiferromagnetism; PrCu_2X_2 (X=Si and Ge);

1. Introduction

The ternary compounds PrCu_2X_2 (X=Si, Ge) are of special interest, belonging to a large family crystallizing in the tetragonal ThCr_2Si_2 -type structure. They order antiferromagnetically below anomalously high Neel temperatures comparing to those of the corresponding Gd compounds [1,2]. The specific heat coefficient is much enhanced; for PrCu_2Si_2 , $\gamma=225$ mJ/mol [1], indicating unusually strong s-f hybridization. Some origins have been suggested for these anomalous characters: a quadrupolar Kondo scattering [3], a preferential hybridization of the f-electrons [4], an anisotropic exchange interaction due to the radial extension of 4f-electrons [2] and so on. Moreover, the existence of another magnetic transition below T_N was suggested [2,5]. Then, magnetic study on PrCu_2X_2 (X=Si and Ge) single crystal compounds have been performed to know more details of the magnetic behavior. The measurements of magnetic susceptibility and magnetization have been carried out using a sample extracting magnetometer at the Institute of Solid State Physics, University of Tokyo.

2. Result and Discussion

The magnetic susceptibility is anisotropic between the c-axis and the direction in the basal plane for both compounds. Here, the easy direction is the c-axis. Within the basal plane, it is isotropic for the Ge-compound while it along the [110] direction is slightly easier than one along the [100] direction for the Si-compound. In the temperature dependence of the c-axis susceptibility, it shows a cusp at 19.5 K and 14.4 K for the Si-compounds and the Ge-compounds, respectively, which is associated with Neel temperature. No anomaly can be observed below T_N for the Si-compound in contrast to the previous suggestion [5]. For the Ge-compound, an anomalous behavior appears around 3.5 K indicating a magnetic transition (The details will be given soon [6].) In the basal plane, there is no detectable anomaly.

Magnetization curves along the main symmetry axes of the tetragonal cell at 2 K are shown for a PrCu_2Si_2 single crystal compound in Fig. 1. Magnetization in the basal plane is isotropic; one along the [100] direction is identical to one along the [110] direction, and it is almost linear. The c-axis magnetization, the easy axis magnetization shows a very sharp one-step metamagnetic transition. It keeps a very small

¹ E-mail:shigeoka@sci.yamaguchi-u.ac.jp

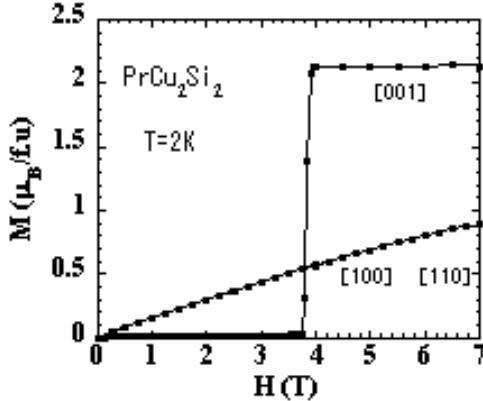


Fig. 1. Magnetization curves along the main symmetry axes of the tetragonal cell at 2 K on a PrCu_2Si_2 single crystal.

value below the critical transition field $H_c = 3.8$ T, increases rapidly at H_c and reaches the saturation value of $2.17 \mu_B/\text{f.u}$. This value is smaller than the theoretical Pr^{3+} moment but is in good agreement with the result from neutron studies [5,7]. This metamagnetic process persists up to T_N although it smooths with increasing temperature.

For PrCu_2Ge_2 , very peculiar behavior can be seen in the c-axis process while behavior in the basal plane is usual and similar to one of PrCu_2Si_2 as shown in Fig.2. Along the c-axis, *an irreversible magnetization process* appears in the virgin magnetization process; in the ascending process, it is a four-step metamagnetic one where magnetization increases rapidly around 0.2 T, 0.45 T, 1.15 T and 1.45 T followed by saturation. Then in the descending process after saturation, it decreases rapidly around 1.3 T, crosses over one of the ascending process and reaches a very small value below 1.2 T. Here is a large hysteresis. This irreversible process appears only in the virgin state (which means the first magnetization measurements after cooling down). The process in the second run becomes a one-step one similar to the virgin descending process; it is a reversible process similar to one of PrCu_2Si_2 . Regarding to the four-step process, magnetization of each plateau is $0.09 \mu_B$, $0.27 \mu_B$, $0.45 \mu_B$ and $2.34 \mu_B$ (=saturation value M_s), corresponding to $1/26 M_s$, $3/26 M_s$, $5/26 M_s$ and M_s , respectively. It is difficult to explain this process on the basis of a simple antiferromagnetic structure with the propagation vector $(0, 0, 1)$ reported [5,7]. Instead of it, this large common denominator suggests a long period antiferromagnetic structure. Metamagnetic transitions can be responsible for a spin-flip. With respect to the one-step metamagnetic process in PrCu_2Si_2 and the second run of PrCu_2Ge_2 , the transition field H_c is 3.8 T and 1.3 T, respectively. The H_c of the Si-compound is about three times larger than one of the Ge-compound while the ordering temperature is

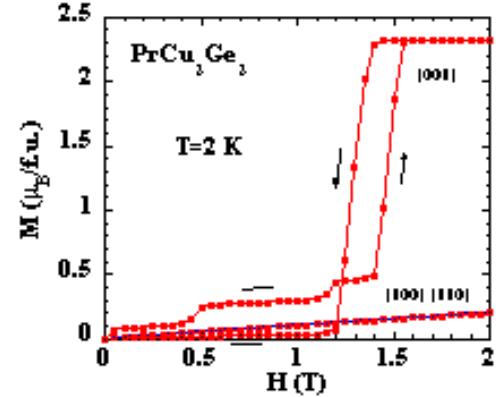


Fig. 2. Magnetization curves along the main symmetry axes at 2 K on a PrCu_2Ge_2 single crystal.

not so different. To explain the high ordering temperature for the Si-compound, additional effects should be added to the origin for the Ge-compound. Magnetization below H_c is unusually small for both compounds which should not be responsible for a magnetic anisotropy. Because the anisotropy is not so large comparing to those of family Pr-compounds which have a huge uni-axial magnetic anisotropy [8,9].

Anomalous magnetic behaviors above mentioned are unknown yet although some effects such as strong crystal field effects, quadrupolar effects and strong s-f electron hybridization have been proposed. Further study is now in progress.

References

- [1] E.V. Sampathkumaran, I. Das, R. Jijayaraghavan, K. Hirota and M. Ishikawa, Solid State Commun. **78**(1991)971.
- [2] E.V. Sampathkumaran, I. Das, R. Jijayaraghavan, H. Yamamoto and M. Ishikawa, Solid State Commun. **83**(1992)609.
- [3] R. Osborn, E.A. Goremychkin, J. Appl. Phys. **76**(1994)6124.
- [4] T. Obama, H. Yasuoka, E.V. Sampathkumaran, J. Phys. Soc. Jpn. **64**(1995)1339.
- [5] V. Ivanov, M. Kolenda, J. Leciejewicz, N. Stusser, A. Szytula, J. Alloys & Compounds **234**(1996)L4.
- [6] T. Shigeoka, Y. Taneda, M. Hedo, Y. Uwatoko, Acta Physica Polonica B to be published.
- [7] A. Szytula, W. Bazela, J. Leciejewicz, Solid State Commun. **48**(1983)1053.
- [8] T. Shigeoka, N. Iwata, H. Fujii, J. Magn. Magn. Mat. **104-107**(1992)1229.
- [9] T. Shigeoka, H. Fujii, K. Yonenobu, K. Sugiyama, M. Date, J. Phys. Soc. Jpn. **58**(1989)394.