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Abstract

To understand the vortex states in Sr2RuO4, we investigate differences of the vortex structure for two chiral pairings
px ± ipy , using quasiclassical Eilenberger theory and the Ginzburg-Landau theory. The induced opposite chiral
component of the pair potential plays an important role in the vortex structure. It produces an

√
H-behavior of

the zero-energy density of states at higher field. We also consider the anisotropic case of the Fermi surface and
superconducting gap.
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For the superconducting state in quasi-two-
dimensional metal Sr2RuO4, the pairing symmetry
is suggested to be the chiral p-wave pairing with the
basic form p± ∼ px ± ipy and inplane equal-spin
pairing [1,2]. This degeneracy is lifted under exter-
nal magnetic field perpendicular to the basal plane,
since p± is a broken time reversal symmetry state
with an orbital angular momentum along the z-axis.
Then, the vortex in the mixed state shows the dif-
ferent structure for the p+-wave and the p−-wave
superconductivity [3,4]. We analyze the magnetic field
(H) dependence of the vortex structure for the chiral
states, based on the quasiclassical Eilenberger theory
and the Ginzburg-Landau (GL) theory.

In the calculation of the quasi-classical theory, we
study the pair potential, the internal field, the local
density of states (LDOS), and the free energy in the
vortex lattice state, numerically solving the Eilen-
berger equations
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= ∆∗(kF, r)g(iωn,kF, r), (2)

where g(iωn,kF, r) = [1−f(iωn, kF, r)f †(iωn,kF, r)]1/2

with the Matsubara frequency ωn, the Fermi velocity
vF = ∂ε(k)/∂k, and the flux quantum φ0. The relative
momentum and the center of mass coordinate of the
Cooper pair are, respectively, indicated by kF on the
Fermi surface and by r. The pair potential ∆(kF, r)
and the vector potential A(r) are self-consistently
calculated from the quasiclassical Green’s functions
g(iωn,kF, r), f(iωn,kF, r) and f†(iωn, kF, r). We set
the energy cutoff ωc = 20Tc and the GL parameter
κBCS = 2.7. In the following, lengths and magnetic
fields are measured in units of ξ0 = vF/∆0 = πξBCS

(ξBCS is the BCS coherence length) and φ0/ξ2
0 , respec-

tively. The LDOS is given by N(E, r) = 〈Img(iωn →
E + iη,kF, r)〉kF with the Fermi surface average
〈· · ·〉kF . In the chiral p-wave pairing, the pair potential
and the pairing interaction are set as

∆(kF, r) = ∆+(r)φ+(kF) + ∆−(r)φ−(kF), (3)

V (k′
F,kF) = V̄ [φ∗

+(k′
F)φ+(kF) + φ∗

−(k′
F)φ−(kF)] (4)

with the pairing functions φ±(kF) for the p±-wave
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components. Unless we consider the induced compo-
nent, there are no differences for the p+-wave and the
p−-wave cases, because the formulation of the Eilen-
berger theory and the results of the vortex structure
are reduced to the same one as in the s-wave case with
a pairing function |φ±(kF)|. Therefore, two component
pair potential is intrinsic and essential for the vortex
structure in the chiral p-wave superconductors. We also
calculate the vortex structure in the s-wave case as a
reference.

The vortex structure in the isotropic case of a
cylindrical Fermi surface kF = kF(cos θ, sin θ) and
φ±(kF) = e±iθ was reported in Ref. [4]. The differ-
ences of the p±-wave cases come from the structure
of the induced opposite chiral component of the pair
potential. The phase winding structure of the induced
component is different depending on the chirality. The
phase of the induced ∆−(r) (∆+(r)) in the p+-wave
(p−-wave) state has +3-winding (−1-winding) at the
vortex center, where the dominant pair potential has
+1-winding. In the p+-wave case, the amplitude of
the induced p−-wave component is small and reduced
to zero near Hc2. Then, the vortex structure is similar
to that of the s-wave case, and Hc2 is same as in the
s-wave case in the two-dimensional Fermi surface. In
the p−-wave case, the induced p+-wave component
is large. The superconductivity can survive up to a
high field, giving high Hc2. The induced component
also produces an anomalous internal field distribution.
When we compare the free energy, the p−-wave state
is stable, and the p+-wave state is metastable.

The two-component GL equations for ∆+(r) and
∆−(r) are derived from the microscopic theory. We
also calculate the vortex structure from the GL equa-
tions, and obtain qualitatively the same vortex struc-
ture. Further, we find the transition from the p+-wave
state to the p−-wave state, because the p−-wave state
has a lower free energy. The domain wall between the
p±-wave states moves, and the area of the p+-wave do-
main shrinks with increasing field.

Next, to study the anisotropy effect, we consider the
case of Fermi surface given by the dispersion ε(k) =
−2t(cos kx + cos ky) − 4t′ cos kx cos ky with t′ = 0.5t
and the chemical potential µ = 1.65t. This reproduces
the Fermi surface shape of γ-sheet in Sr2RuO4 [3]. The
pairing functions are defined as φ±(kF) = sin kx ∓
i sin ky. By this definition, the p±-wave states have
the same phase winding as in the isotropic case noted
above. In this anisotropic case, we show the zero-energy
LDOS N(E = 0, r) within a unit cell of the vortex
lattice in Fig. 1(a). We consider the square vortex lat-
tice where the nearest neighbor vortex is located in the
45◦-direction from the a-axis, following the observed
vortex lattice configuration [5]. The magnitude of the
zero-energy states has a peak at the vortex core, and
extends to the a- and b-axis directions (diagonal di-
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Fig. 1. (a) Zero-energy LDOS N(E = 0, r) within a square

unit-cell of the vortex lattice. Vortex is located at the center

of the figure. (b) Zero-energy DOS N(0) as a function of
√

H

for the p−-wave (•) and the p+-wave (◦) cases. Points ∗ show

the s-wave case with a pairing function |φ±(kF)|. N(0) is

normalized by the normal state DOS. Dashed lines show the

relation N(0) ∝ √
H.

rections of the unit cell in the Fig. 1(a)) because the
kF-resolved coherence length ξ(kF) = vF(kF)/|φ(kF)|
is longer in these directions [3].

When we quantitatively consider the field depen-
dence of the zero energy DOS N(0), averaging the
LDOS, we see the effect of the chiral p-wave super-
conductivity. The stable p−-wave case shows an

√
H-

behavior at higher field, as displayed in Fig. 1(b). It is
because the energy gap |∆(kF, r)| can be small in some
kF-directions even outside of a vortex core, when the
induced component ∆+(r) is large in Eq. (3) in addi-
tion to the dominant ∆−(r). Since the induced com-
ponent is restricted within a vortex core region, N(0)
deviates from an

√
H-relation at low field. This type

H-dependence of the DOS is observed in the specific
heat measurement[6].

In summary, we have studied the vortex structure
in px ± ipy-wave superconductors, using the quasi-
classical Eilenberger theory and the GL theory. By
the effect of the induced opposite chiral component,
the H-dependence of the DOS shows an

√
H-relation.

The LDOS around the vortex core extends toward the
direction with the longer k-resolved coherence length.
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