

De Haas-van Alphen effect of CeRhIn₅ under pressure

Hiroaki Shishido^{a,1}, Rikio Settai^a, Shingo Araki^{a,2}, Taiki Ueda^a, Yoshihiko Inada^a, Hisatomo Harima^b, Yoshichika Ōnuki^a

^a*Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan*

^b*The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan*

Abstract

We have studied the de Haas-van Alphen (dHvA) effect under pressure for an antiferromagnet CeRhIn₅, where the antiferromagnetic state is changed into the superconducting state at higher pressures than 1.6 GPa. It is clarified from the present dHvA experiment that the topology of the Fermi surface is unchanged up to 2.1 GPa but the cyclotron mass increases strongly above 1.6 GPa. Superconductivity is found to be realized in this heavy fermion state.

Key words: pressure-induced super conductivity, dHvA effect, CeRhIn₅

1. Introduction

Pressure-induced superconductivity is one of the most interesting assures in the strongly correlated electron systems. CeRhIn₅ is such a superconductor [1]. It crystallizes in the tetragonal structure with alternating layers of CeIn₃ and RhIn₂, stacked sequently along the [001] direction (c-axis). When pressure p is applied to CeRhIn₅, the Néel temperature T_N =3.8 K increases slightly with increasing pressure but decreases above 1 GPa. Superconductivity appears above 1.6 GPa, and the superconducting transition temperature T_c has a maximum of T_c =2 K around 2.5 GPa [2].

The purpose of the present study is to report the electronic state when pressure reaches the superconducting state of CeRhIn₅ via a microscopic probe of the de Haas-van Alphen (dHvA) experiment. The dHvA results of CeRhIn₅ are compared to the previous results of a non-4f reference compound LaRhIn₅ and an itinerant 4f-electron system of CeCoIn₅ [3,4].

2. Experimental Results and Discussion

Fig. 1 shows the dHvA oscillation and the corresponding fast Fourier transformation (FFT) spectrum for CeRhIn₅ at 1.28GPa. The dHvA frequency F ($=\hbar c S_F / 2\pi e$) is proportional to the extremal (maximum or minimum) cross-sectional area of the Fermi surface S_F . Branches named β_2 , α_1 and $\alpha_{2,3}$ correspond to main cylindrical Fermi surfaces in CeRhIn₅ [4]. These dHvA branches are well identified by the theoretical Fermi surfaces of the non-4f reference compound LaRhIn₅. A dHvA frequency $F=6.13 \times 10^7$ Oe of branch β_2 in CeRhIn₅ is the same as 6.13×10^7 Oe in LaRhIn₅, but is smaller than 7.35×10^7 Oe in CeCoIn₅. The dHvA frequencies of branches α_1 and $\alpha_{2,3}$ in CeRhIn₅ are also the same as those of LaRhIn₅, but are smaller than those of CeCoIn₅ with an itinerant 4f-electron character [3,4]. From these experimental results, it was concluded that the contribution of the 4f electrons to the volume of the Fermi surface in CeRhIn₅ is negligibly small, indicating that the 4f electrons in CeRhIn₅ are localized.

Fig. 2 shows the pressure dependence of the dHvA frequency for main branches β_2 , α_1 and $\alpha_{2,3}$ in CeRhIn₅. The dHvA frequency is almost unchanged

¹ Corresponding author. E-mail: shishido@crystal.phys.sci.osaka-u.ac.jp

² Present address: Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai,Ibaraki 319-1195, Japan

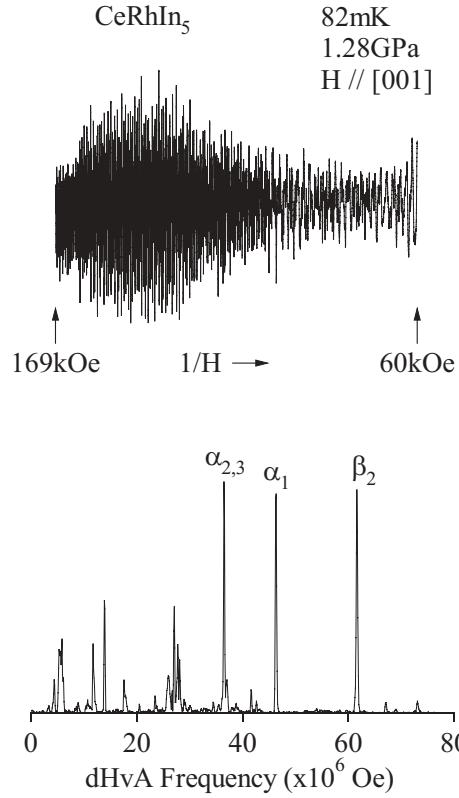


Fig. 1. dHvA oscillation and its FFT spectrum in CeRhIn₅.

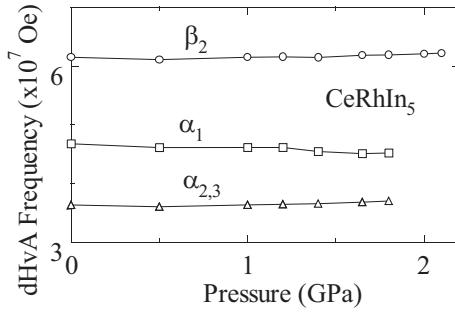


Fig. 2. Pressure dependence of the dHvA frequency in CeRhIn₅.

against the pressure up to 2.1 GPa. It means that the topology of the main Fermi surfaces is almost unchanged.

On the other hand, the cyclotron mass m_c^* increases strongly with increasing pressure, as shown in Fig. 3, where the cyclotron mass of branch β_2 ($m_c^* = 5.7 m_0$) at ambient pressure reaches about $40 m_0$ at 2 GPa. Here

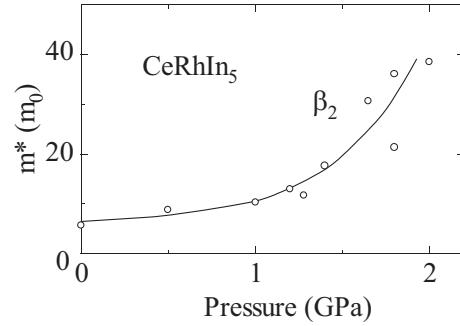


Fig. 3. Pressure dependence of the cyclotron mass of branch β_2 in CeRhIn₅.

we note that the cyclotron mass was determined by the temperature dependence of the dHvA amplitude.

In the cerium compound, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the many-body Kondo effect compete with each other [5]. The degree of mass enhancement depends on the degree of competition between the RKKY interaction and the Kondo effect, which in turn depends on the degree of hybridization of the 4f electrons with the conduction electrons. The heavy fermion state with an extremely large cyclotron mass is formed around the pressure of 2 GPa. It is thus concluded that pressure-induced superconductivity in CeRhIn₅ is realized in this heavy fermion state.

This work was financially supported by the Grant-in-Aid for COE Research (10CE 2004) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- [1] H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundly, J. L. Sarrao, Z. Fisk, and J. D. Thompson: Phys. Rev. Lett. **84** (2000) 4986.
- [2] T. Muramatsu, N. Tateiwa, T. C. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, H. Shishido, Y. Haga and Y. Onuki: J. Phys. Soc. Jpn. **bf 70** (2001) 3362.
- [3] R. Settai, H. Shishido, S. Ikeda, Y. Murakawa, M. Nakashima, D. Aoki, Y. Haga, H. Harima and Y. Onuki: J. Phys.: Condens. Matter. **13** (2001) L627.
- [4] H. Shishido, R. Settai, D. Aoki, S. Ikeda, H. Nakawaki, T. Iizuka, Y. Inada, K. Sugiyama, T. Takeuchi, K. Kindo, T. C. Kobayashi, Y. Haga, H. Harima, Y. Aoki, T. Namiki, H. Sato and Y. Onuki: J. Phys. Soc. Jpn. **71** (2002) 162.
- [5] Y. Onuki, T. Goto and T. Kasuya: Materials Science and Technology, ed. K. H. Bushow (VHC, Weinheim, 1992) Part I, 545.