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Abstract

We investigate pseudogap phenomena realized in the BCS pairing model with a long but finite interaction range.
We obtain all-order self-energy corrections exactly. It is found that vertex corrections to the self-energy are crucially
important for the pseudogap state.

Key words: pseudogap; BCS pairing model; superconductivity

1. Introduction

Recently, it has been proposed by some authors
that the pseudogap phenomena observed in high Tc

cuprates may be attributed to the superconducting
fluctuation.[1] In the previous studies, the single parti-
cle self-energy is calculated by one-loop approximation
(t-matrix approximation, diagrammatically expressed
as Fig.1(a)) or self-consistent t-matrix approximation
(expressed as Fig.1(b)). These calculations give some
different results. For example, in the self-consistent
one-loop approximation, the pseudogap of the DOS is
destroyed near the Fermi level, and the quasiparticle
peak is restored. On the other hand, such a restoration
is not seen in the lowest-order one-loop approxima-
tion. Thus, it is desirable to examine the effects of
vertex corrections, which are expressed as Fig.1(c).
For this purpose, we investigate a simple model for
which we can calculate all-order self-energy corrections
in the temperature range where the superconducting
fluctuation is Gaussian-like.

2. Model and method

The model Hamiltonian is given by
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Fig. 1. Diagrams for the irreducible single-particle self-energy.

The solid line represents the single electron Green’s func-

tion. The wavy line represents the propagator of the super-

conducting fluctuation. (a) Lowest order one loop correction.

(b) Self-consistent one loop approximation. (c) Some typical

diagrams of vertex corrections which are not included in the

diagrams (a) and (b).

H =
∑

k,σ

Ekc†kσckσ − 1

N

∑

q

V (q)B†(q)B(q), (1)

where V (q) = V
∏d

i=1
lc/[π(1 + l2cq2

i )], B(q) =∑
k

ξkck↓c−k+q↑, and d is the spatial dimension. The
second term is the pairing attractive interaction with
the interaction range lc. B(0) is a local annihilation
operator of a Cooper pair with a structure factor
ξk. In the limit of lc → +∞, eq.(1) is the pairing
model, which is exactly solvable.[2,3] In this limit, the
BCS mean field solution is exact, and the effects of
fluctuation are completely suppressed. For finite but
sufficiently large lc, the superconducting fluctuation is
restored, and can be calculated systematically using
the expansion in terms of 1/ldc . Note that V ldc ≡ U
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must be finite in the limit of lc → ∞ to keep the mean
field Tc finite. In the limit of lc → +∞, the super-
conducting fluctuation propagator is Gaussian-like,[3]
〈φq,nφ∗

q,n〉 = 1/(a|ωn|+ bq2 + t). Here t = (T −Tc)/Tc.
In the case of t � bl−2

c for which we can calculate the
all-order self-energy corrections, the Ginzburg crite-
rion,

√
4T/ldc � t, is satisfied for d ≥ 2, and thus, the

superconducting fluctuation propagator is given by
the Gaussian propagator with renormalized parame-
ters even for finite but sufficiently large lc. Using this
propagator, we calculate the self-energy corrections.

3. All-order self-energy corrections

We have carried out the frequency sum in the calcu-
lation of the self-energy for all order diagrams. Then,
we found that for t � bl−2

c , the momentum sum is sim-
plified, and that the self-energy has the same form as
that obtained by Sadovskii for 1D fermion systems in-
teracting with static Gaussian fluctuation.[4] Then, we
can apply Elyutin-Sadovskii’s combinatorics method.
The self-energy in all orders is written as a continued
fraction form,[5]

Σk(ε) =
v(1)g̃k

S1(k, ε)
− v(2)g̃k

S2(k, ε)
− v(3)g̃k

S3(k, ε)
− · · · , (2)

where g̃k = Tξ2
kU/(tπdldc ), and Sm(k, ε) = iε +

(−1)m−1Ek + im(t/a)sgnε, and v(m) = [(m + 1)/2],
[...] is Gauss’s symbol. Using this formula, we calculate
the single-particle DOS, ρ(ε), numerically in the case
of s-wave pairing ξk = 1 (Fig.2(a)). The parameters
are chosen so as to satisfy the condition bl−2

c � t.
The pseudogap behavior is due to the large en-

hancement of the single-particle damping as shown
in Fig.2(b), which is caused by strong scattering with
superconducting fluctuation. To see how this en-
hancement is affected by the vertex corrections, we
calculate analytically the damping at the Fermi level,
up to a numerical constant, γ ∼ aTU/(πd ldc t2). For√

aU/(πdldc ) � t, the damping is much enhanced like
∼ T/t2 � T . Since we consider the case of t � b/l2c ,
the temperature range where the above result is appli-

cable is b/l2c � t �
√

aU/(πdldc ). As d increases, the
tempearture range becomes narrower, and eventually
vanishes for d = 4. It is noted that the result of all-
order calculation gives the same asymptotic behavior
as that obtained by the lowest-order one-loop approx-
imation. This implies that higher order corrections
cancel each other, and the lowest-order term gives the
leading contribution. We compare this result with that
obtained from self-consistent t-matrix approximation.
The self-energy in the self-consistent approximation is
derived by substituting v(m) = 1 for all m of eq.(2).
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Fig. 2. (a) The single particle DOS ρ(ε) plotted as a function

of energy. The vertical axis is renormalized by the bare DOS

ρ0 . g̃ = 1, C(0) = 0.1 for the solid line. g̃ = 1, C(0) = 0.5

for the dotted line. (b) The single-particle damping at the

Fermi momentum plotted as a function of energy. The same

parameters as above are used.

Then, we have γsc ∼ √
g̃k for sufficiently small t. For

t � b/l2c ,
√

g̃k � [ξ2
kUT/(πdbld−2

c )]1/2. Thus, in the
case of d = 2 or 3, the damping γsc cannot be enhanced
sufficiently. The deviation from the exact result is se-
rious in this approximation These results imply that
the lowest order one-loop calculation is more reliable
than the self-consistent one-loop treatment.

In summary, It has been revealed that the vertex
corrections to the self-energy are essentially important
in higher order calculations of the pseudogap state.
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