

Magneto-volume effect in the ground and field induced states of Ce₂Fe₁₇

Yoshikazu Makihara^{a,1}, Hironobu Fujii^b, Tetsuya Fujiwara^b, Kazuo Watanabe^c, Kohki Takahashi^c, Keiichi Koyama^c, Mitsuhiro Motokawa^c

^a*Physics Department, Kyushu Kyoritsu University, Kitakyushu 807-8585, Japan*

^b*Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan*

^c*Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan*

Abstract

@X-ray diffraction measurements on Ce₂Fe₁₇ have been performed in the temperature range from 8 to 300K at the magnetic fields up to 5T. The thermal expansion curves along the principal axes for antiferromagnet and ferromagnet Ce₂Fe₁₇ are presented. A distinct lattice expansion was observed simultaneously with the metamagnetic transition. This suggests that the hybridization between Fe 3d- and Ce 4f-electrons in Ce₂Fe₁₇ is suppressed by the application of magnetic field.

Key words: Ce₂Fe₁₇; magneto-volume effect; X-ray diffraction

The magnetism of Ce₂Fe₁₇ is sensitive to alloying, magnetic field and hydrostatic pressure. Two types of magnetic structures in the ground state for Ce₂Fe₁₇ have been proposed. One is a fan structure with the ferromagnetic component parallel to the basal plane and the other is a helical spin structure with no spontaneous magnetization¹⁻³.

It has been known that R₂Fe₁₇ (R=rare earth) show a large spontaneous magnetostriction similar to that of Invar⁴n. The thermal expansion measurements on Ce₂Fe₁₇ which exhibited the fan structure in the ground state were performed by several researchers^{5,6}n. In this work, we have measured the temperature and magnetic field dependence of the lattice parameter for two compounds of Ce₂Fe₁₇, which exhibit the fan and the helical spin structure, respectively, and investigated the magneto-volume effect in the ferromagnetic and antiferromagnetic state.

The single-phase polycrystalline sample with a rhombohedral Th₂Zn₁₇-type structure was prepared

by arc melting with subsequent annealing at 1310K for a week. The sample had no spontaneous magnetization at 5K and showed a metamagnetic transition around H=1T, indicating the helical spin structure in the ground state. Hereafter, we call this sample "antiferromagnet Ce₂Fe₁₇ (Ce₂Fe₁₇(AF))". We also prepared a reference sample of Ce₂Fe₁₇ with a ferromagnetic component at 5K. This sample is called "ferromagnet Ce₂Fe₁₇ (Ce₂Fe₁₇(F))".

Powder X-ray diffraction measurements were carried out in the temperature range from 8 to 300K at the magnetic fields up to 5T using Fe-K α or Cu-K α radiation⁷n. We measured (300), (024), (600) and (309) reflections, which were indexed in a hexagonal cell, to calculate the lattice parameter.

The temperature dependences of lattice parameters a and c, and the cell volume v ($=\sqrt{3}a^2c/2$) for Ce₂Fe₁₇(AF) and Ce₂Fe₁₇(F) are shown in Fig.1. The values of a, c and v at 0T and 300K for Ce₂Fe₁₇(AF) are 8.488Å, 12.411Å and 774.4Å³, which are smaller about 0.07, 0.12 and 0.25 % than those of Ce₂Fe₁₇(F), respectively. A clear spontaneous magnetostriction originated in the magnetic order of itinerant Fe sub-

¹ Corresponding author: fax:+81-93-693-3202. E-mail: makihara@kyukyo-u.ac.jp

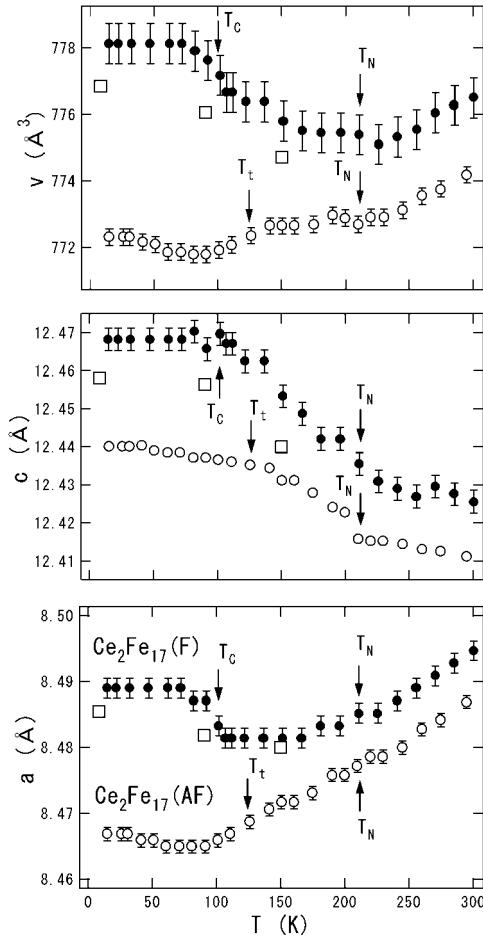


Fig. 1. The temperature dependences of the lattice parameter for $\text{Ce}_2\text{Fe}_{17}$. The symbols of open and closed circles represent the data for antiferromagnet $\text{Ce}_2\text{Fe}_{17}$ ($\text{Ce}_2\text{Fe}_{17}(\text{AF})$) and ferromagnet $\text{Ce}_2\text{Fe}_{17}$ ($\text{Ce}_2\text{Fe}_{17}(\text{F})$) at magnetic field of 0T, respectively. The open squares represent the data for $\text{Ce}_2\text{Fe}_{17}(\text{AF})$ at magnetic field of 5T.

lattice moments is observed in the c-axis below the Néel temperature T_N 210K in both $\text{Ce}_2\text{Fe}_{17}(\text{AF})$ and $\text{Ce}_2\text{Fe}_{17}(\text{F})$. While, there is no distinct anomaly in the a-axis at T_N in each compound, indicating the existence of anisotropic exchange interactions. On the other hand, the thermal expansion curve of the a-axis for $\text{Ce}_2\text{Fe}_{17}(\text{AF})$ shows no remarkable anomaly at T_t =125K, where the helical spin structure changes to another one with a smaller wave vector $m3n$. A slight upturn is observable below 100K in the curve. This result is quite different from that of $\text{Ce}_2\text{Fe}_{17}(\text{F})$ which shows a distinct expansion in the a-axis at T_C =100K as shown in Fig.1. Andreev et al. reported a similar anomaly at T_C =100K for $\text{Ce}_2\text{Fe}_{17}$ which showed ferromagnetic property in the ground state $m6n$. As a result, the temperature dependence of v obtained for $\text{Ce}_2\text{Fe}_{17}(\text{AF})$ is quite different from that for

$\text{Ce}_2\text{Fe}_{17}(\text{F})$ as shown in Fig.1. These results indicate that the helical spin structure is stabilized in $\text{Ce}_2\text{Fe}_{17}$ with no distinct spontaneous magnetostriiction in the a-axis at low temperatures. We consider that the helical structure in the ground state of $\text{Ce}_2\text{Fe}_{17}$ is intrinsic, and the structure is easily suppressed by a slight increase of the Ce-Fe interatomic distance in the basal plane $m3n$.

On the other hand, we observed that the Bragg peaks for $\text{Ce}_2\text{Fe}_{17}(\text{AF})$ shifted toward low 2θ angle side at the magnetic fields above 1T. The values of a, c and v at 5T at 8K, 90K and 150K are illustrated with open squares in Fig.1. It is noteworthy that the lattice parameters and the unit cell volume at 5T are close to those of $\text{Ce}_2\text{Fe}_{17}(\text{F})$ at 0T. This simply suggests that the forced ferromagnetic state in $\text{Ce}_2\text{Fe}_{17}(\text{AF})$ at 5T is similar to the magnetic state in $\text{Ce}_2\text{Fe}_{17}(\text{F})$ at 0T.

In conclusion, it has been made clear that the helical spin structure with a smaller spontaneous volume magnetostriiction below T_t is stabilized in $\text{Ce}_2\text{Fe}_{17}$. The antiferromagnetic interaction between the iron atoms in $\text{Ce}_2\text{Fe}_{17}$ should be influenced by the hybridization of Fe 3d-electrons with the itinerant Ce 4f-electrons $m3n$. The anisotropic thermal expansion in $\text{Ce}_2\text{Fe}_{17}$ is an evidence for the effect of anisotropic hybridization. We consider that the hybridization is suppressed and the field induced fan structure is stabilized with increasing the magnetic field, accompanied with a distinct volume expansion.

Acknowledgements

We are very grateful to Dr. Y. Watanabe for his kind support in X-ray diffraction measurement at Tohoku University.

References

- [1] D.Givord, R.Lemaire, IEEE Trans. Magn. **MAG-10** (1974) 109.
- [2] J.Janssen, H.Fujii, T.Ekino, K.Izawa, T.Suzuki, T.Fujita, F.R. de Boer, Phys. Rev. **B56** (1991) 13716.
- [3] H.Fukuda, J.Janssen, H.Fujii, T.Ekino, Y.Morii, J. Magn. Soc. Jpn. **23** (1999) 108.
- [4] D.Gignoux, D.Givord, F.Givord, R.Lemaire, J. Magn. Magn. Mat. **10** (1979) 288.
- [5] I.Medvedeva, Z.Arnold, A.Kuchin, J.Kamarad, J. Appl. Phys. **86** (1999) 6295.
- [6] A.V.Andreev, A.Lindbaum, J. Alloys Compd. **297** (2000) 43.
- [7] K.Watanabe, Y.Watanabe, S.Awaji, M.Fujiwara, N.Kobayashi, T.Hasebe, Adv. Cryo. Eng. **44** (1998) 747.